Email updates

Keep up to date with the latest news and content from BMC Proceedings and BioMed Central.

This article is part of the supplement: Proceedings of the 14th European workshop on QTL mapping and marker assisted selection (QTL-MAS)

Open Access Proceedings

Genomic breeding value prediction and QTL mapping of QTLMAS2010 data using Bayesian Methods

Xiaochen Sun, David Habier, Rohan L Fernando, Dorian J Garrick and Jack CM Dekkers*

Author Affiliations

Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa 50011, USA

For all author emails, please log on.

BMC Proceedings 2011, 5(Suppl 3):S13  doi:10.1186/1753-6561-5-S3-S13

Published: 27 May 2011

Abstract

Background

Bayesian methods allow prediction of genomic breeding values (GEBVs) using high-density single nucleotide polymorphisms (SNPs) covering the whole genome with effective shrinkage of SNP effects using appropriate priors. In this study we applied a modification of the well-known BayesA and BayesB methods to estimate the proportion of SNPs with zero effects (π) and a common variance for non-zero effects. The method, termed BayesCπ, was used to predict the GEBVs of the last generation of the QTLMAS2010 data. The accuracy of GEBVs from various methods was estimated by the correlation with phenotypes in the last generation. The methods were BayesCPi and BayesB with different π values, both with and without polygenic effects, and best linear unbiased prediction using an animal model with a genomic or numerator relationship matrix. Positions of quantitative trait loci (QTLs) were identified based on the variances of GEBVs for windows of 10 consecutive SNPs. We also proposed a novel approach to set significance thresholds for claiming QTL in this specific case by using pedigree-based simulation of genotypes. All analyses were focused on detecting and evaluating QTL with additive effects.

Results

The accuracy of GEBVs was highest for BayesCπ, but the accuracy of BayesB with π equal to 0.99 was similar to that of BayesCπ. The accuracy of BayesB dropped with a decrease in π. Including polygenic effects into the model only had marginal effects on accuracy and bias of predictions. The number of QTL identified was 15 when based on a stringent 10% chromosome-wise threshold and increased to 21 when a 20% chromosome-wise threshold was used.

Conclusions

The BayesCπ method without polygenic effects was identified to be the best method for the QTLMAS2010 dataset, because it had highest accuracy and least bias. The significance criterion based on variance of 10-SNP windows allowed detection of more than half of the QTL, with few false positives.