Email updates

Keep up to date with the latest news and content from BMC Proceedings and BioMed Central.

This article is part of the supplement: Selected Proceedings of the 6th International Symposium on Bioinformatics Research and Applications (ISBRA'10)

Open Access Proceedings

IP6K gene identification in plant genomes by tag searching

Fabio Fassetti1, Ofelia Leone1, Luigi Palopoli1, Simona E Rombo1* and Adolfo Saiardi2

Author Affiliations

1 DEIS, Università della Calabria, Via Pietro Bucci 41C Rende (CS) Italy

2 LMCB, MRC Cell Biology Unit & Department of Developmental Biology, University College London, Gower Street, London, UK

For all author emails, please log on.

BMC Proceedings 2011, 5(Suppl 2):S1  doi:10.1186/1753-6561-5-S2-S1

Published: 28 April 2011

Abstract

Background

Plants have played a special role in inositol polyphosphate (IP) research since in plant seeds was discovered the first IP, the fully phosphorylated inositol ring of phytic acid (IP6). It is now known that phytic acid is further metabolized by the IP6 Kinases (IP6Ks) to generate IP containing pyro-phosphate moiety. The IP6K are evolutionary conserved enzymes identified in several mammalian, fungi and amoebae species. Although IP6K has not yet been identified in plant chromosomes, there are many clues suggesting its presences in vegetal cells.

Results

In this paper we propose a new approach to search for the plant IP6K gene, that lead to the identification in plant genome of a nucleotide sequence corresponding to a specific tag of the IP6K family. Such a tag has been found in all IP6K genes identified up to now, as well as in all genes belonging to the Inositol Polyphosphate Kinases superfamily (IPK). The tag sequence corresponds to the inositol-binding site of the enzyme, and it can be considered as characterizing all IPK genes. To this aim we applied a technique based on motif discovery. We exploited DLSME, a software recently proposed, which allows for the motif structure to be only partially specified by the user. First we applied the new method on mitochondrial DNA (mtDNA) of plants, where such a gene could have been nested, possibly encrypted and hidden by virtue of the editing and/or trans-splicing processes. Then we looked for the gene in nuclear genome of two model plants, Arabidopsis thaliana and Oryza sativa.

Conclusions

The analysis we conducted in plant mitochondria provided the negative, though we argue relevant, result that IP6K does not actually occur in vegetable mtDNA. Very interestingly, the tag search in nuclear genomes lead us to identify a promising sequence in chromosome 5 of Oryza sativa. Further analyses are in course to confirm that this sequence actually corresponds to IP6K mammalian gene.