Email updates

Keep up to date with the latest news and content from BMC Systems Biology and BioMed Central.

This article is part of the supplement: Selected articles from The 5th IEEE International Conference on Systems Biology (ISB 2011)

Open Access Research

Discovering protein complexes in protein interaction networks via exploring the weak ties effect

Xiaoke Ma and Lin Gao*

Author affiliations

School of Computer Science and Technology, Xidian University, 710071, PR China

For all author emails, please log on.

Citation and License

BMC Systems Biology 2012, 6(Suppl 1):S6  doi:10.1186/1752-0509-6-S1-S6

Published: 16 July 2012

Abstract

Background

Studying protein complexes is very important in biological processes since it helps reveal the structure-functionality relationships in biological networks and much attention has been paid to accurately predict protein complexes from the increasing amount of protein-protein interaction (PPI) data. Most of the available algorithms are based on the assumption that dense subgraphs correspond to complexes, failing to take into account the inherence organization within protein complex and the roles of edges. Thus, there is a critical need to investigate the possibility of discovering protein complexes using the topological information hidden in edges.

Results

To provide an investigation of the roles of edges in PPI networks, we show that the edges connecting less similar vertices in topology are more significant in maintaining the global connectivity, indicating the weak ties phenomenon in PPI networks. We further demonstrate that there is a negative relation between the weak tie strength and the topological similarity. By using the bridges, a reliable virtual network is constructed, in which each maximal clique corresponds to the core of a complex. By this notion, the detection of the protein complexes is transformed into a classic all-clique problem. A novel core-attachment based method is developed, which detects the cores and attachments, respectively. A comprehensive comparison among the existing algorithms and our algorithm has been made by comparing the predicted complexes against benchmark complexes.

Conclusions

We proved that the weak tie effect exists in the PPI network and demonstrated that the density is insufficient to characterize the topological structure of protein complexes. Furthermore, the experimental results on the yeast PPI network show that the proposed method outperforms the state-of-the-art algorithms. The analysis of detected modules by the present algorithm suggests that most of these modules have well biological significance in context of complexes, suggesting that the roles of edges are critical in discovering protein complexes.