Email updates

Keep up to date with the latest news and content from BMC Systems Biology and BioMed Central.

This article is part of the supplement: The 2010 International Conference on Bioinformatics and Computational Biology (BIOCOMP 2010): Systems Biology

Open Access Research article

Leveraging social networks for understanding the evolution of epidemics

Gonzalo Martín, Maria-Cristina Marinescu*, David E Singh and Jesús Carretero

Author affiliations

Computer Science Department, Carlos III University of Madrid, Avda. de la Universidad 30, 28911, Leganés, Madrid, Spain

For all author emails, please log on.

Citation and License

BMC Systems Biology 2011, 5(Suppl 3):S14  doi:10.1186/1752-0509-5-S3-S14

Published: 23 December 2011

Abstract

Background

To understand how infectious agents disseminate throughout a population it is essential to capture the social model in a realistic manner. This paper presents a novel approach to modeling the propagation of the influenza virus throughout a realistic interconnection network based on actual individual interactions which we extract from online social networks. The advantage is that these networks can be extracted from existing sources which faithfully record interactions between people in their natural environment. We additionally allow modeling the characteristics of each individual as well as customizing his daily interaction patterns by making them time-dependent. Our purpose is to understand how the infection spreads depending on the structure of the contact network and the individuals who introduce the infection in the population. This would help public health authorities to respond more efficiently to epidemics.

Results

We implement a scalable, fully distributed simulator and validate the epidemic model by comparing the simulation results against the data in the 2004-2005 New York State Department of Health Report (NYSDOH), with similar temporal distribution results for the number of infected individuals. We analyze the impact of different types of connection models on the virus propagation. Lastly, we analyze and compare the effects of adopting several different vaccination policies, some of them based on individual characteristics -such as age- while others targeting the super-connectors in the social model.

Conclusions

This paper presents an approach to modeling the propagation of the influenza virus via a realistic social model based on actual individual interactions extracted from online social networks. We implemented a scalable, fully distributed simulator and we analyzed both the dissemination of the infection and the effect of different vaccination policies on the progress of the epidemics. The epidemic values predicted by our simulator match real data from NYSDOH. Our results show that our simulator can be a useful tool in understanding the differences in the evolution of an epidemic within populations with different characteristics and can provide guidance with regard to which, and how many, individuals should be vaccinated to slow down the virus propagation and reduce the number of infections.