Email updates

Keep up to date with the latest news and content from BMC Systems Biology and BioMed Central.

Open Access Highly Accessed Research article

On the architecture of cell regulation networks

Yueheng Lan1 and Igor Mezić23*

Author Affiliations

1 Department of Physics, Tsinghua University, Beijing 100084, China

2 The Center for Control, Dynamical Systems and Computation, University of California, Santa Barbara, CA 93106, USA

3 Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA

For all author emails, please log on.

BMC Systems Biology 2011, 5:37  doi:10.1186/1752-0509-5-37

Published: 2 March 2011

Abstract

Background

With the rapid development of high-throughput experiments, detecting functional modules has become increasingly important in analyzing biological networks. However, the growing size and complexity of these networks preclude structural breaking in terms of simplest units. We propose a novel graph theoretic decomposition scheme combined with dynamics consideration for probing the architecture of complex biological networks.

Results

Our approach allows us to identify two structurally important components: the "minimal production unit"(MPU) which responds quickly and robustly to external signals, and the feedback controllers which adjust the output of the MPU to desired values usually at a larger time scale. The successful application of our technique to several of the most common cell regulation networks indicates that such architectural feature could be universal. Detailed illustration and discussion are made to explain the network structures and how they are tied to biological functions.

Conclusions

The proposed scheme may be potentially applied to various large-scale cell regulation networks to identify functional modules that play essential roles and thus provide handles for analyzing and understanding cell activity from basic biochemical processes.