Open Access Open Badges Research article

Thromboelastometry in veal calves to detect hemostatic variations caused by low doses of dexamethasone treatment

Antonio Borrelli1*, Claudio Bellino1, Elena Bozzetta2, Barbara Bruno1, Sara Falco1, Cristiana Maurella2, Paola Gianella1, Marzia Pezzolato2, Aurelio Cagnasso1 and Antonio D’Angelo1

Author Affiliations

1 University of Turin, Grugliasco (TO), 10095, Italy

2 Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Turin, 10154, Italy

For all author emails, please log on.

BMC Veterinary Research 2013, 9:55  doi:10.1186/1746-6148-9-55

Published: 26 March 2013



The illegal administration of hormones, steroids, β-agonists and other anabolic agents to productive livestock in the European Union continues, despite the long-term ban on their use and despite the measures provided under the directives to monitor certain substances and residues thereof in the interest of protecting consumer health and animal wellbeing. Often administered in low doses in the form of a drug cocktail, these compounds escape detection by common analytical techniques. The aim of this study was to determine whether low-dose dexamethasone administration (0.4 mg orally per day, for 20 days) in white-meat calves produced variations in blood coagulation, as measured by thromboelastometry. A second aim was to determine whether such variations could be valid in detecting illicit low-dose dexamethasone treatment.


The study population was 42 Friesian calves kept under controlled conditions until 6 months of age. The calves were subdivided into 2 groups: a control group (group A, n = 28) and a group treated with dexamethasone (group B, n = 14) for 20 days beginning at 5 months of age. When compared against the age-matched control group, the dexamethasone-treated calves showed a significant increase in alpha angle, maximum clot firmness and a significant decrease in clot formation time on all thromboelastometric profiles (P < 0.05). The clotting time was significantly decreased on the in-TEM® profile but increased on the ex-TEM® and fib-TEM® profiles (P <0.05). The Receiver Operating Characteristic curves, plotted for the Maximum Clot Elasticity (MCE), had a cut-off value ≥488.23 mm for in-TEM® MCE [Se 85.7%, (95% CI 57.2-98.2); Sp 100% 96.43% (95% CI 81.7-99.9] and a cut-off value ≥63.94 mm for fib-TEM® MCE [Se 92.8 (95% CI 66.1-99.8); Sp 89.3% (95% CI 71.8-97.7)]. In order to increase the sensitivity of the test two parameters (in-TEM® and fib-TEM® MCE) were used as two parallel tests; subsequently, the sensitivity rose to a point value of 99% (95% CI 85.4-99.9).


Thromboelastometry identified a state of hypercoagulability in the dexamethasone-treated subjects. Furthemore, the results of this preliminary study suggest that TEM may be useful in the detection of illicit low-dose dexamethasone treatment.

Veal calves; Dexamethasone; Illicit treatment; Thromboelastometry; Hypercoagulability