Open Access Research article

Cost effectiveness of pediatric pneumococcal conjugate vaccines: a comparative assessment of decision-making tools

Nathorn Chaiyakunapruk123, Ratchadaporn Somkrua1, Raymond Hutubessy4*, Ana Maria Henao4, Joachim Hombach4, Alessia Melegaro5, John W Edmunds6 and Philippe Beutels7

Author Affiliations

1 Center of Pharmaceutical Outcomes Research, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand

2 School of Population Health, University of Queensland, Brisbane, Australia

3 School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA

4 Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland

5 DONDENA Centre for Research on Social Dynamics, Bocconi University, Milan, Italy

6 London School of Hygiene and Tropical Medicine, London, UK

7 Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute, University of Antwerp, Belgium

For all author emails, please log on.

BMC Medicine 2011, 9:53  doi:10.1186/1741-7015-9-53

Published: 12 May 2011



Several decision support tools have been developed to aid policymaking regarding the adoption of pneumococcal conjugate vaccine (PCV) into national pediatric immunization programs. The lack of critical appraisal of these tools makes it difficult for decision makers to understand and choose between them. With the aim to guide policymakers on their optimal use, we compared publicly available decision-making tools in relation to their methods, influential parameters and results.


The World Health Organization (WHO) requested access to several publicly available cost-effectiveness (CE) tools for PCV from both public and private provenance. All tools were critically assessed according to the WHO's guide for economic evaluations of immunization programs. Key attributes and characteristics were compared and a series of sensitivity analyses was performed to determine the main drivers of the results. The results were compared based on a standardized set of input parameters and assumptions.


Three cost-effectiveness modeling tools were provided, including two cohort-based (Pan-American Health Organization (PAHO) ProVac Initiative TriVac, and PneumoADIP) and one population-based model (GlaxoSmithKline's SUPREMES). They all compared the introduction of PCV into national pediatric immunization program with no PCV use. The models were different in terms of model attributes, structure, and data requirement, but captured a similar range of diseases. Herd effects were estimated using different approaches in each model. The main driving parameters were vaccine efficacy against pneumococcal pneumonia, vaccine price, vaccine coverage, serotype coverage and disease burden. With a standardized set of input parameters developed for cohort modeling, TriVac and PneumoADIP produced similar incremental costs and health outcomes, and incremental cost-effectiveness ratios.


Vaccine cost (dose price and number of doses), vaccine efficacy and epidemiology of critical endpoint (for example, incidence of pneumonia, distribution of serotypes causing pneumonia) were influential parameters in the models we compared. Understanding the differences and similarities of such CE tools through regular comparisons could render decision-making processes in different countries more efficient, as well as providing guiding information for further clinical and epidemiological research. A tool comparison exercise using standardized data sets can help model developers to be more transparent about their model structure and assumptions and provide analysts and decision makers with a more in-depth view behind the disease dynamics. Adherence to the WHO guide of economic evaluations of immunization programs may also facilitate this process.

Please see related article: webcite