Additional file 2: Figure S1.

Length distribution of the predicted 4,699 ORFs. Figure S2. Growth analysis of the five small proteins with faster or slower growth in procyclics following induction of RNAi. Figure S3. Growth analysis of the seven small proteins essential in procyclics following induction of RNAi with and without expression of an RNAi-resistant construct. The data are based on three independent experiments. Figure S4. Northern blot analysis of essential ORFs. Northern blots for six (Tb11.NT.108, Tb10.NT.90, Tb10.NT.86, Tb10.NT.87, Tb11.NT.28 and Tb3.NT.18) of the seven essential transcripts. Marker sizes in kb are indicated on the left. The predicted transcript size is indicated below each panel. Northern blot analysis for Tb11.NT.29 can be found in Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C: The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog 2010, 6:e1001090 [28]. Figure S5. Semi-quantitative RT-PCR analysis of RNAi knockdown. RT-PCR was performed on the transcripts encoding each essential small protein from procyclic cells un-induced (-) or induced (+) for RNAi. Histone 4 (H4) was used as a control. The small protein transcript and H4 are indicated to the right of each panel. Figure S6. Listing of the seven essential proteins in procyclics with a C-terminal GFP or HA tag. All constructs rescued the lethal RNAi phenotype. Figure S7. Western blot analysis of GFP-tagged proteins encoded by an RNAi-resistant construct. Size markers (kDa) are shown at the left. Figure S8. Growth analysis of bloodstream-form cells following RNAi against four small proteins. Growth for un-induced (tet-) and induced (tet+) cells are shown in log scale. The data are based on three independent experiments. Figure S9. Listing of oligonucleotides used in this study.

Format: PDF Size: 644KB Download file

This file can be viewed with: Adobe Acrobat Reader

Ericson et al. BMC Biology 2014 12:14   doi:10.1186/1741-7007-12-14