Email updates

Keep up to date with the latest news and content from BMC Health Services Research and BioMed Central.

Open Access Highly Accessed Open Badges Correspondence

Quantitative data management in quality improvement collaboratives

Mireille van den Berg1, Rianne Frenken2 and Roland Bal3*

Author Affiliations

1 XXscience, Koningsdam 1, Rotterdam, The Netherlands

2 Healthcare Inspectorate of the Netherlands, Parnassusplein 5, The Hague, The Netherlands

3 Dept. of Health Policy and Management, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR Rotterdam

For all author emails, please log on.

BMC Health Services Research 2009, 9:175  doi:10.1186/1472-6963-9-175

Published: 26 September 2009



Collaborative approaches in quality improvement have been promoted since the introduction of the Breakthrough method. The effectiveness of this method is inconclusive and further independent evaluation of the method has been called for. For any evaluation to succeed, data collection on interventions performed within the collaborative and outcomes of those interventions is crucial. Getting enough data from Quality Improvement Collaboratives (QICs) for evaluation purposes, however, has proved to be difficult. This paper provides a retrospective analysis on the process of data management in a Dutch Quality Improvement Collaborative. From this analysis general failure and success factors are identified.


This paper discusses complications and dilemma's observed in the set-up of data management for QICs. An overview is presented of signals that were picked up by the data management team. These signals were used to improve the strategies for data management during the program and have, as far as possible, been translated into practical solutions that have been successfully implemented.

The recommendations coming from this study are:

From our experience it is clear that quality improvement programs deviate from experimental research in many ways. It is not only impossible, but also undesirable to control processes and standardize data streams. QIC's need to be clear of data protocols that do not allow for change. It is therefore minimally important that when quantitative results are gathered, these results are accompanied by qualitative results that can be used to correctly interpret them.

Monitoring and data acquisition interfere with routine. This makes a database collecting data in a QIC an intervention in itself. It is very important to be aware of this in reporting the results. Using existing databases when possible can overcome some of these problems but is often not possible given the change objective of QICs.

Introducing a standardized spreadsheet to the teams is a very practical and helpful tool in collecting standardized data within a QIC. It is vital that the spreadsheets are handed out before baseline measurements start.