Email updates

Keep up to date with the latest news and content from BMC Medical Informatics and Decision Making and BioMed Central.

Open Access Highly Accessed Research article

Decision support for hospital bed management using adaptable individual length of stay estimations and shared resources

Robert Schmidt1*, Sandra Geisler2 and Cord Spreckelsen1

Author Affiliations

1 Institute for Medical Informatics, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany

2 Chair of Computer Science 5 - Information Systems, RWTH Aachen University, Ahornstr. 55, Aachen, 52056, Germany

For all author emails, please log on.

BMC Medical Informatics and Decision Making 2013, 13:3  doi:10.1186/1472-6947-13-3

Published: 7 January 2013

Abstract

Background

Elective patient admission and assignment planning is an important task of the strategic and operational management of a hospital and early on became a central topic of clinical operations research. The management of hospital beds is an important subtask. Various approaches have been proposed, involving the computation of efficient assignments with regard to the patients’ condition, the necessity of the treatment, and the patients’ preferences. However, these approaches are mostly based on static, unadaptable estimates of the length of stay and, thus, do not take into account the uncertainty of the patient’s recovery. Furthermore, the effect of aggregated bed capacities have not been investigated in this context. Computer supported bed management, combining an adaptable length of stay estimation with the treatment of shared resources (aggregated bed capacities) has not yet been sufficiently investigated. The aim of our work is: 1) to define a cost function for patient admission taking into account adaptable length of stay estimations and aggregated resources, 2) to define a mathematical program formally modeling the assignment problem and an architecture for decision support, 3) to investigate four algorithmic methodologies addressing the assignment problem and one base-line approach, and 4) to evaluate these methodologies w.r.t. cost outcome, performance, and dismissal ratio.

Methods

The expected free ward capacity is calculated based on individual length of stay estimates, introducing Bernoulli distributed random variables for the ward occupation states and approximating the probability densities. The assignment problem is represented as a binary integer program. Four strategies for solving the problem are applied and compared: an exact approach, using the mixed integer programming solver SCIP; and three heuristic strategies, namely the longest expected processing time, the shortest expected processing time, and random choice. A baseline approach serves to compare these optimization strategies with a simple model of the status quo. All the approaches are evaluated by a realistic discrete event simulation: the outcomes are the ratio of successful assignments and dismissals, the computation time, and the model’s cost factors.

Results

A discrete event simulation of 226,000 cases shows a reduction of the dismissal rate compared to the baseline by more than 30 percentage points (from a mean dismissal ratio of 74.7% to 40.06% comparing the status quo with the optimization strategies). Each of the optimization strategies leads to an improved assignment. The exact approach has only a marginal advantage over the heuristic strategies in the model’s cost factors (≤3%). Moreover,this marginal advantage was only achieved at the price of a computational time fifty times that of the heuristic models (an average computing time of 141 s using the exact method, vs. 2.6 s for the heuristic strategy).

Conclusions

In terms of its performance and the quality of its solution, the heuristic strategy RAND is the preferred method for bed assignment in the case of shared resources. Future research is needed to investigate whether an equally marked improvement can be achieved in a large scale clinical application study, ideally one comprising all the departments involved in admission and assignment planning.