Email updates

Keep up to date with the latest news and content from BMC Pharmacology and Toxicology and BioMed Central.

Open Access Research article

Statins but not fibrates improve the atherogenic to anti-atherogenic lipoprotein particle ratio: a randomized crossover study

Sammy Y Chan12*, GB John Mancini12, Andrew Ignaszewski12 and Jiri Frohlich23

Author Affiliations

1 Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada

2 Healthy Heart Program, St. Paul's Hospital, Vancouver, Canada

3 Department of Laboratory Medicine, University of British Columbia, Vancouver, Canada

For all author emails, please log on.

BMC Clinical Pharmacology 2008, 8:10  doi:10.1186/1472-6904-8-10

Published: 28 October 2008

Abstract

Background

Prior studies suggested low density lipoprotein particle (LDLP) size is a predictor of atherosclerosis. Knowledge of effects of lipid lowering drugs on lipoprotein subclasses is useful. We treated subjects with hyperlipidemia sequentially with statins and fibrates, the 2 main classes of lipid lowering therapy and studied changes in NMR lipoprotein subclasses.

Methods

35 subjects (21 males; 60 ± 12 y) were enrolled in a crossover study. Subjects had baseline lipid profile & apoB. Lipoprotein subclasses, particle numbers and diameters were assessed with NMR spectroscopy. Subjects were randomized to simvastatin 20 mg or fenofibrate 200 mg. Repeat testing was done at 12 weeks. After 6 week washout, subjects were started on alternate drug for 12 weeks with pre/post tests.

Results

Both therapies resulted in expected changes in lipids and apoB. Decreases in total cholesterol, LDL and apoB were greater with simvastatin. Fenofibrate led to small increase in HDL. Both therapies decreased LDLP. Reduction in LDLP was greater with simvastatin (32%, p < .001) compared to fenofibrate (17%; p = .036 vs pre; p = .027 vs simvastatin end). Fenofibrate resulted in 17% rise in large LDLP (p = .06 vs pre) and 32% drop in small LDLP (p = .007 vs pre). Simvastatin led to decrease in both LDLP fractions (19% large LDLP; p = .001 vs fenofibrate end; 34% small LDLP, p = .019 vs pre). With fenofibrate, LDLP size increased from 20.4 nm to 20.8 nm (p = .037). There was no change in LDLP size with simvastatin. There was 18% increase in HDL particle number (HDLP) with fenofibrate (p = .05). There were no changes in HDLP with simvastatin. There were no changes in HDLP size with either drug. Pre- and post-therapy LDLP/HDLP ratio was similar with fenofibrate but was reduced by simvastatin (p = .045).

Conclusion

Simvastatin reduced LDLP across all subclasses with no effect on size. Simvastatin had no effect on HDLP. Fenofibrate had weak effect on LDLP number but increased LDLP size by raising large LDLP and reducing small LDLP. Fenofibrate had weak effect on HDLP number with no change in size. Importantly, net atherogenic to antiatherogenic lipoprotein ratio (LDLP/HDLP) was reduced by simvastatin but not by fenofibrate.