Email updates

Keep up to date with the latest news and content from BMC Complementary and Alternative Medicine and BioMed Central.

Open Access Highly Accessed Research article

Antibacterial activity of traditional medicinal plants used by Haudenosaunee peoples of New York State

Frank M Frey* and Ryan Meyers

Author Affiliations

Department of Biology, Colgate University, 13 Oak Drive, Hamilton NY 13346 USA

For all author emails, please log on.

BMC Complementary and Alternative Medicine 2010, 10:64  doi:10.1186/1472-6882-10-64

Published: 6 November 2010



The evolution and spread of antibiotic resistance, as well as the evolution of new strains of disease causing agents, is of great concern to the global health community. Our ability to effectively treat disease is dependent on the development of new pharmaceuticals, and one potential source of novel drugs is traditional medicine. This study explores the antibacterial properties of plants used in Haudenosaunee traditional medicine. We tested the hypothesis that extracts from Haudenosaunee medicinal plants used to treat symptoms often caused by bacterial infection would show antibacterial properties in laboratory assays, and that these extracts would be more effective against moderately virulent bacteria than less virulent bacteria.


After identification and harvesting, a total of 57 different aqueous extractions were made from 15 plant species. Nine plant species were used in Haudenosaunee medicines and six plant species, of which three are native to the region and three are introduced, were not used in traditional medicine. Antibacterial activity against mostly avirulent (Escherichia coli, Streptococcus lactis) and moderately virulent (Salmonella typhimurium, Staphylococcus aureus) microbes was inferred through replicate disc diffusion assays; and observed and statistically predicted MIC values were determined through replicate serial dilution assays.


Although there was not complete concordance between the traditional use of Haudenosaunee medicinal plants and antibacterial activity, our data support the hypothesis that the selection and use of these plants to treat disease was not random. In particular, four plant species exhibited antimicrobial properties as expected (Achillea millefolium, Ipomoea pandurata, Hieracium pilosella, and Solidago canadensis), with particularly strong effectiveness against S. typhimurium. In addition, extractions from two of the introduced species (Hesperis matronalis and Rosa multiflora) were effective against this pathogen.


Our data suggest that further screening of plants used in traditional Haudenosaunee medicine is warranted, and we put forward several species for further investigation of activity against S. typhimurium (A. millefolium, H. matronalis, I. pandurata, H. pilosella, R. multiflora, S. canadensis).