Table 3

Evaluation of the Real-SPINE and NetSurfP method on subsets of residues from the CB511 dataset predicted with high reliability.

Real-SPINE

NetSurfP


%Top

N

RSA

ASA

P-RSA

M-RSA

RSA

ASA

P-RSA

M-RSA


10

8372

0.73

0.74

0.16

0.18

0.77

0.79

0.35

0.35

20

16745

0.73

0.74

0.16

0.18

0.79

0.79

0.31

0.31

25

20931

0.73

0.74

0.17

0.19

0.79

0.79

0.30

0.30

50

41863

0.72

0.74

0.18

0.20

0.77

0.77

0.28

0.28

75

62795

0.71

0.73

0.22

0.24

0.74

0.75

0.28

0.28

80

66981

0.71

0.73

0.23

0.25

0.73

0.74

0.28

0.28

90

75354

0.70

0.73

0.25

0.27

0.72

0.73

0.28

0.28

100

83727

0.70

0.73

0.27

0.29

0.70

0.72

0.29

0.29


%Top and N give the percentage and number of residues selected. RSA and ASA give the Pearson's correlation between predicted and target for relative and absolute surface areas, respectively. P-RSA, and M-RSA give the mean predicted and mean measured RSA values, respectively, on the selected subset of residues.

Petersen et al. BMC Structural Biology 2009 9:51   doi:10.1186/1472-6807-9-51

Open Data