Email updates

Keep up to date with the latest news and content from BMC Physiology and BioMed Central.

Open Access Research article

Decrease in oxidative phosphorylation yield in presence of butyrate in perfused liver isolated from fed rats

Jean-Louis Gallis1, Pierre Tissier1, Henri Gin2 and Marie-Christine Beauvieux12*

Author Affiliations

1 Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS-UB2, 146 rue Léo Saignat, 33076 F-Bordeaux Cedex France

2 Service de Nutrition et Diabétologie, Hôpital Haut-Lévêque, Avenue de Magellan, F-33604 Pessac France

For all author emails, please log on.

BMC Physiology 2007, 7:8  doi:10.1186/1472-6793-7-8

Published: 28 August 2007

Abstract

Background

Butyrate is the main nutrient for the colonocytes but the effect of the fraction reaching the liver is not totally known. A decrease in tissue ATP content and increase in respiration was previously demonstrated when livers were perfused with short-chain fatty acids (SCFA) such as butyrate, or octanoate.

In fed rats the oxidative phosphorylation yield was determined on the whole isolated liver perfused with butyrate in comparison with acetate and octoanoate (3 mmol/L). The rate of ATP synthesis was determined in the steady state by monitoring the rate of ATP loss after inhibition of (i) cytochrome oxidase (oxidative phosphorylation) with KCN (2.5 mmol/L) and (ii) glyceraldehyde 3-phosphate dehydrogenase (glycolysis) with IAA (0.5 mmol/L). The ATP flux, estimated by 31P Nuclear Magnetic Resonance, and the measured liver respiration allowed the ATP/O ratio to be determined.

Results

ATP turnover was significantly lower in the presence of butyrate (0.40 ± 0.10 μmoles/min.g, p = 0.001, n = 7) and octanoate (0.56 ± 0.10 μmoles/min.g, p = 0.01, n = 5) than in control (1.09 ± 0.13 μmoles/min.g, n = 7), whereas perfusion with acetate induced no significant decrease (0.76 ± 0.10 μmoles/min.g, n = 7). Mitochondrial oxygen consumption was unchanged in the presence of acetate (1.92 ± 0.16 vs 1.86 ± 0.16 for control) and significantly increased in the presence of butyrate (p = 0.02) and octanoate (p = 0.0004) (2.54 ± 0.18 and 3.04 ± 0.15 μmoles/min.g, respectively). The oxidative phosphorylation yield (ATP/O ratio) calculated in the whole liver was significantly lower with butyrate (0.07 ± 0.02, p = 0.0006) and octanoate (0.09 ± 0.02, p = 0.005) than in control (0.30 ± 0.05), whereas there was no significant change with acetate (0.20 ± 0.02).

Conclusion

Butyrate or octanoate decrease rather than increase the rate of ATP synthesis, resulting in a decrease in the apparent ATP/O ratio. Butyrate as a nutrient has the same effect as longer chain FA. An effect on the hepatic metabolism should be taken into account when large quantities of SCFA are directly used or obtained during therapeutic or nutritional strategies.