Email updates

Keep up to date with the latest news and content from BMC Physiology and BioMed Central.

Open Access Highly Accessed Research article

The inflammatory and normal transcriptome of mouse bladder detrusor and mucosa

Marcia R Saban1, Helen L Hellmich2, Mary Turner3, Ngoc-Bich Nguyen17, Rajanikanth Vadigepalli4, David W Dyer5, Robert E Hurst6, Michael Centola3 and Ricardo Saban1*

Author Affiliations

1 Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, USA

2 Department of Anesthesiology, University of Texas Medical Branch, Galveston, USA

3 Oklahoma Medical Research Foundation (OMRF), Arthritis and Immunology Research Program, Microarray Core Facility, Oklahoma City, USA

4 Daniel Baugh Institute for Functional Genomics and Computational Biology. Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, USA

5 Department of Microbiology and Immunology, Laboratory for Genomics and Bioinformatics, Oklahoma University Health Sciences Center, Oklahoma City, USA

6 Department of Urology, The University Oklahoma Health Sciences Center, Oklahoma City, USA

7 Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, USA

For all author emails, please log on.

BMC Physiology 2006, 6:1  doi:10.1186/1472-6793-6-1

Published: 18 January 2006

Abstract

Background

An organ such as the bladder consists of complex, interacting set of tissues and cells. Inflammation has been implicated in every major disease of the bladder, including cancer, interstitial cystitis, and infection. However, scanty is the information about individual detrusor and urothelium transcriptomes in response to inflammation. Here, we used suppression subtractive hybridizations (SSH) to determine bladder tissue- and disease-specific genes and transcriptional regulatory elements (TRE)s. Unique TREs and genes were assembled into putative networks.

Results

It was found that the control bladder mucosa presented regulatory elements driving genes such as myosin light chain phosphatase and calponin 1 that influence the smooth muscle phenotype. In the control detrusor network the Pax-3 TRE was significantly over-represented. During development, the Pax-3 transcription factor (TF) maintains progenitor cells in an undifferentiated state whereas, during inflammation, Pax-3 was suppressed and genes involved in neuronal development (synapsin I) were up-regulated. Therefore, during inflammation, an increased maturation of neural progenitor cells in the muscle may underlie detrusor instability. NF-κB was specifically over-represented in the inflamed mucosa regulatory network. When the inflamed detrusor was compared to control, two major pathways were found, one encoding synapsin I, a neuron-specific phosphoprotein, and the other an important apoptotic protein, siva. In response to LPS-induced inflammation, the liver X receptor was over-represented in both mucosa and detrusor regulatory networks confirming a role for this nuclear receptor in LPS-induced gene expression.

Conclusion

A new approach for understanding bladder muscle-urothelium interaction was developed by assembling SSH, real time PCR, and TRE analysis results into regulatory networks. Interestingly, some of the TREs and their downstream transcripts originally involved in organogenesis and oncogenesis were also activated during inflammation. The latter represents an additional link between inflammation and cancer. The regulatory networks represent key targets for development of novel drugs targeting bladder diseases.