Email updates

Keep up to date with the latest news and content from BMC Ecology and BioMed Central.

Open Access Highly Accessed Research article

Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus

Kathryn A Hanley1*, Jacob T Nelson1, Erin E Schirtzinger1, Stephen S Whitehead2 and Christopher T Hanson2

Author Affiliations

1 Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA

2 Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA

For all author emails, please log on.

BMC Ecology 2008, 8:1  doi:10.1186/1472-6785-8-1

Published: 13 February 2008

Abstract

Background

Competitive displacement of a weakly virulent pathogen strain by a more virulent strain is one route to disease emergence. However the mechanisms by which pathogens compete for access to hosts are poorly understood. Among vector-borne pathogens, variation in the ability to infect vectors may effect displacement. The current study focused on competitive displacement in dengue virus serotype 3 (DENV3), a mosquito-borne pathogen of humans. In Sri Lanka in the 1980's, a native DENV3 strain associated with relatively mild dengue disease was displaced by an invasive DENV3 strain associated with the most severe disease manifestations, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), resulting in an outbreak of DHF/DSS. Here we tested the hypothesis that differences between the invasive and native strain in their infectivity for Aedes aegypti mosquitoes, the primary vector of DENV, contributed to the competitive success of the invasive strain

Results

To be transmitted by a mosquito, DENV must infect and replicate in the midgut, disseminate into the hemocoel, infect the salivary glands, and be released into the saliva. The ability of the native and invasive DENV3 strains to complete the first three steps of this process in Aedes aegypti mosquitoes was measured in vivo. The invasive strain infected a similar proportion of mosquitoes as the native strain but replicated to significantly higher titers in the midgut and disseminated with significantly greater efficiency than the native strain. In contrast, the native and invasive strain showed no significant difference in replication in cultured mosquito, monkey or human cells.

Conclusion

The invasive DENV3 strain infects and disseminates in Ae. aegypti more efficiently than the displaced native DENV3 strain, suggesting that the invasive strain is transmitted more efficiently. Replication in cultured cells did not adequately characterize the known phenotypic differences between native and invasive DENV3 strains. Infection dynamics within the vector may have a significant impact on the spread and replacement of dengue virus lineages.