Email updates

Keep up to date with the latest news and content from BMC Ecology and BioMed Central.

Open Access Research article

Super-races are not likely to dominate a fungal population within a life time of a perennial crop plantation of cultivar mixtures: a simulation study

Xiangming Xu

Author affiliations

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China

East Malling Research, New Road, West Malling, Kent ME19 6BJ, UK

Citation and License

BMC Ecology 2012, 12:16  doi:10.1186/1472-6785-12-16

Published: 3 August 2012

Abstract

Background

Deployment of cultivars with different resistance in mixtures is one means to manage plant diseases and prolong the life of resistance genes. One major concern in adopting mixtures is the development of ‘super-races’ that can overcome many resistance genes present in the mixture. A stochastic simulation model was developed to study the dynamics of virulence alleles in two-cultivar mixtures of perennial crops, focusing on the effects of cost of virulence and pathogen reproduction mechanism. The simulated mechanism of virulence has characteristics of both major and minor genes.

Results

Random genetic drift due to repeated population crashes during the overwintering phase led to fixation of a single fungal genotype (in terms of its virulence), often within 100 seasons. Overall, cost of virulence is most important in determining the virulence dynamics under the present model formulation. With cost of virulence incorporated, nearly all simulation runs ended up with a single fungal genotype that can infect only one of the two cultivars. In absence of cost of virulence, most of the simulation runs ended up with fungal genotypes that can infect both host cultivars but in many cases do not contain the maximum possible number of virulence alleles due to random drift. A minimum of 20% sexual reproduction between strains from different cultivars is necessary to ensure that the final fixed strains are able to infect both cultivars. Although the number of virulence alleles in the final genotype and the time to fixation are affected by simulation factors, most of the variability was among replicate simulation runs (i.e. stochastic in nature). The time to fixation is generally long relative to cropping cycles.

Conclusions

A single fungal genotype will dominate a population due to the bottleneck in overwintering with cost of virulence primarily determining whether the dominant genotype can infect both cultivars. However, the dominant genotype is unlikely to accumulate all the virulence alleles due to genetic drift. The risk of emergence and spread of super-races is insufficiently great to prevent the use of cultivar mixtures of perennial crops as a means to reduce disease development provided that host resistance structure in mixtures is altered every cropping cycle.

Keywords:
Mixture; Fungal diseases; Super races; Fixation; Cost of virulence; Mating system