Email updates

Keep up to date with the latest news and content from BMC Public Health and BioMed Central.

Open Access Highly Accessed Research article

Time series analysis of dengue fever and weather in Guangzhou, China

Liang Lu1, Hualiang Lin12, Linwei Tian2*, Weizhong Yang3, Jimin Sun4 and Qiyong Liu15*

Author Affiliations

1 National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China

2 Stanley Ho Centre for Emerging Infectious Diseases, School of Public Health, Chinese University of Hong Kong, Hong Kong SAR, PR China

3 Chinese Center for Disease Control and Prevention, Beijing, PR China

4 Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, PR China

5 State Key Laboratory for Infectious Disease Prevention and Control, Beijing, PR China

For all author emails, please log on.

BMC Public Health 2009, 9:395  doi:10.1186/1471-2458-9-395

Published: 27 October 2009

Abstract

Background

Monitoring and predicting dengue incidence facilitates early public health responses to minimize morbidity and mortality. Weather variables are potential predictors of dengue incidence. This study explored the impact of weather variability on the transmission of dengue fever in the subtropical city of Guangzhou, China.

Methods

Time series Poisson regression analysis was performed using data on monthly weather variables and monthly notified cases of dengue fever in Guangzhou, China for the period of 2001-2006. Estimates of the Poisson model parameters was implemented using the Generalized Estimating Equation (GEE) approach; the quasi-likelihood based information criterion (QICu) was used to select the most parsimonious model.

Results

Two best fitting models, with the smallest QICu values, are selected to characterize the relationship between monthly dengue incidence and weather variables. Minimum temperature and wind velocity are significant predictors of dengue incidence. Further inclusion of minimum humidity in the model provides a better fit.

Conclusion

Minimum temperature and minimum humidity, at a lag of one month, are positively associated with dengue incidence in the subtropical city of Guangzhou, China. Wind velocity is inversely associated with dengue incidence of the same month. These findings should be considered in the prediction of future patterns of dengue transmission.