Open Access Study protocol

Variability in the performance of preventive services and in the degree of control of identified health problems: A primary care study protocol

Bonaventura Bolíbar1*, Clara Pareja2, M Pilar Astier-Peña3, Julio Morán4, Teresa Rodríguez-Blanco5, Magdalena Rosell-Murphy5, Manuel Iglesias6, Sebastián Juncosa7, Juanjo Mascort8, Concepció Violan9, Rosa Magallón10 and Javier Apezteguia11

Author Affiliations

1 Institut d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), C/Gran Via de les Corts Catalanes 587 àtic, 08007 Barcelona, Spain

2 Centro de Salud La Mina, Institut Català de la Salut, C/Mar s/n, 08930 Sant Adrià de Besòs, Barcelona, Spain

3 Centro de Salud de San Pablo, C/Agudores 7, 50003 Zaragoza, Spain

4 Dirección de Atención Primaria del Servicio Navarro de Salud, Plaza de la Paz s/n, 6a planta, 31002 Pamplona, Spain

5 Institut d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), C/Gran Via de les Corts Catalanes 587 àtic, 08007 Barcelona, Spain

6 Centro de Salud El Carmel, Institut Català de la Salut, C/de Murtra, 08032 Barcelona, Spain

7 UD Centre, Institut Cátalà de la Salut, C/Torrebonica s/n, 08227 Terrassa, Barcelona, Spain

8 Centro de Salud Florida Sud, Institut Català de la Salut, C/Parc dels Ocellets s/n, 08905 Hospitalet de Llobregat, Barcelona, Spain

9 Institut d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol). C/Gran Via de les Corts Catalanes 587 àtic, 08007 Barcelona, Spain

10 Unidad de Investigación Atención Primaria. Centro de Salud Arrabal. Gracia Gazulla 16. 50015 Zaragoza, Spain

11 Dirección de Atención Primaria del Servicio Navarro de Salud, Plaza de la Paz s/n 6a planta, 31002 Pamplona, Spain

For all author emails, please log on.

BMC Public Health 2008, 8:281  doi:10.1186/1471-2458-8-281

Published: 8 August 2008

Abstract

Background

Preventive activities carried out in primary care have important variability that makes necessary to know which factors have an impact in order to establish future strategies for improvement. The present study has three objectives: 1) To describe the variability in the implementation of 7 preventive services (screening for smoking status, alcohol abuse, hypertension, hypercholesterolemia, obesity, influenza and tetanus immunization) and to determine their related factors; 2) To describe the degree of control of 5 identified health problems (smoking, alcohol abuse, hypertension, hypercholesterolemia and obesity); 3) To calculate intraclass correlation coefficients.

Design

Multi-centered cross-sectional study of a randomised sample of primary health care teams from 3 regions of Spain designed to analyse variability and related factors of 7 selected preventive services in years 2006 and 2007. At the end of 2008, we will perform a cross-sectional study of a cohort of patients attended in 2006 or 2007 to asses the degree of control of 5 identified health problems. All subjects older than16 years assigned to a randomised sample of 22 computerized primary health care teams and attended during the study period are included in each region providing a sample with more than 850.000 subjects. The main outcome measures will be implementation of 7 preventive services and control of 5 identified health problems. Furthermore, there will be 3 levels of data collection: 1) Patient level (age, gender, morbidity, preventive services, attendance); 2) Health-care professional level (professional characteristics, years working at the team, workload); 3) Team level (characteristics, electronic clinical record system). Data will be transferred from electronic clinical records to a central database with prior encryption and dissociation of subject, professional and team identity. Global and regional analysis will be performed including standard analysis for primary health care teams and health-care professional level. Linear and logistic regression multilevel analysis adjusted for individual and cluster variables will also be performed. Variability in the number of preventive services implemented will be calculated with Poisson multilevel models. Team and health-care professional will be considered random effects. Intraclass correlation coefficients, standard error and variance components for the different outcome measures will be calculated.