Email updates

Keep up to date with the latest news and content from BMC Public Health and BioMed Central.

Open Access Research article

Hierarchical cluster analysis of labour market regulations and population health: a taxonomy of low- and middle-income countries

Carles Muntaner12, Haejoo Chung3*, Joan Benach4 and Edwin Ng1

Author Affiliations

1 Dalla Lana School of Public Health, University of Toronto, Toronto, Canada

2 Bloomberg Faculty of Nursing, University of Toronto, Toronto, Canada

3 Department of Healthcare Management, Korea University, Seoul, Republic of Korea

4 Health Inequalities Research Group (GREDS), Employment Conditions Network (EMCONET), CIBER Epidemiología y Salud Pública (CIBERESP), Department of Experimental Sciences and Health, Pompeu Fabra University, Barcelona, Catalonia, Spain

For all author emails, please log on.

BMC Public Health 2012, 12:286  doi:10.1186/1471-2458-12-286

Published: 18 April 2012

Abstract

Background

An important contribution of the social determinants of health perspective has been to inquire about non-medical determinants of population health. Among these, labour market regulations are of vital significance. In this study, we investigate the labour market regulations among low- and middle-income countries (LMICs) and propose a labour market taxonomy to further understand population health in a global context.

Methods

Using Gross National Product per capita, we classify 113 countries into either low-income (n = 71) or middle-income (n = 42) strata. Principal component analysis of three standardized indicators of labour market inequality and poverty is used to construct 2 factor scores. Factor score reliability is evaluated with Cronbach's alpha. Using these scores, we conduct a hierarchical cluster analysis to produce a labour market taxonomy, conduct zero-order correlations, and create box plots to test their associations with adult mortality, healthy life expectancy, infant mortality, maternal mortality, neonatal mortality, under-5 mortality, and years of life lost to communicable and non-communicable diseases. Labour market and health data are retrieved from the International Labour Organization's Key Indicators of Labour Markets and World Health Organization's Statistical Information System.

Results

Six labour market clusters emerged: Residual (n = 16), Emerging (n = 16), Informal (n = 10), Post-Communist (n = 18), Less Successful Informal (n = 22), and Insecure (n = 31). Primary findings indicate: (i) labour market poverty and population health is correlated in both LMICs; (ii) association between labour market inequality and health indicators is significant only in low-income countries; (iii) Emerging (e.g., East Asian and Eastern European countries) and Insecure (e.g., sub-Saharan African nations) clusters are the most advantaged and disadvantaged, respectively, with the remaining clusters experiencing levels of population health consistent with their labour market characteristics.

Conclusions

The labour market regulations of LMICs appear to be important social determinant of population health. This study demonstrates the heuristic value of understanding the labour markets of LMICs and their health effects using exploratory taxonomy approaches.