Email updates

Keep up to date with the latest news and content from BMC Cancer and BioMed Central.

Open Access Highly Accessed Research article

Autocrine regulation of cell proliferation by estrogen receptor-alpha in estrogen receptor-alpha-positive breast cancer cell lines

Huining Tan, Yili Zhong and Zhongzong Pan*

Author Affiliations

Department of Animal Science, Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA

For all author emails, please log on.

BMC Cancer 2009, 9:31  doi:10.1186/1471-2407-9-31

Published: 26 January 2009

Abstract

Background

Estrogen receptor-α (ERα) is essential for mammary gland development and is a major oncogene in breast cancer. Since ERα is not colocalized with the cell proliferation marker Ki-67 in the normal mammary glands and the majority of primary breast tumors, it is generally believed that paracrine regulation is involved in ERα mediated cell proliferation. In the paracrine model, ERα-positive cells don't proliferate but will release some paracrine growth factors to stimulate the neighboring cells to proliferate. In a subpopulation of cancer cells in some primary breast tumors, however, ERα does colocalize with the cell proliferation marker Ki-67, suggesting an autocrine regulation by ERα in some primary breast tumors.

Methods

Colocalization of ERα with Ki-67 in ERα-positive breast cancer cell lines (MCF-7, T47D, and ZR75-1) was evaluated by immunofluorescent staining. Cell cycle phase dependent expression of ERα was determined by co-immunofluorescent staining of ERα and the major cyclins (D, E, A, B), and by flow cytometry analysis of ERαhigh cells. To further confirm the autocrine action of ERα, MCF-7 cells were growth arrested by ICI182780 treatment, followed by treatment with EGFR inhibitor, before estrogen stimulation and analyses for colocalization of Ki-67 and ERα and cell cycle progression.

Results

Colocalization of ERα with Ki-67 was present in all three ERα-positive breast cancer cell lines. Unlike that in the normal mammary glands and the majority of primary breast tumors, ERα is highly expressed throughout the cell cycle in MCF-7 cells. Without E2 stimulation, MCF-7 cells released from ICI182780 treatment remain at G1 phase. E2 stimulation of ICI182780 treated cells, however, promotes the expression and colocalization of ERα and Ki-67 as well as the cell cycle progressing through the S and G2/M phases. Inhibition of EGFR signaling does not inhibit the autocrine action of ERα.

Conclusion

Our data indicate that ERα can mediate estrogen-induced cell proliferation in an autocrine mode in ERα-positive breast cancer cell lines. All of the three ERα-positive cell lines used in our study showed colocalization of ERα and Ki-67, indicating that these cell lines might be originated from primary tumor cells with autocrine regulation.