Open Access Highly Accessed Research article

Bcl-XL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line

Aline A Fiebig1, Weijia Zhu1, Catherine Hollerbach1, Brian Leber2 and David W Andrews1*

Author Affiliations

1 Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada

2 Departments of Medicine and Biochemistry and BiomedicalSciences, McMaster University, Hamilton, Canada

For all author emails, please log on.

BMC Cancer 2006, 6:213  doi:10.1186/1471-2407-6-213

Published: 23 August 2006



Bcl-2 and Bcl-XL are anti-apoptotic paralogues that inhibit apoptosis elicited by a wide variety of stimuli, and play critical roles in cancer development and resistance to treatment. Many clinical studies have indicated that expression of these anti-apoptotic proteins in tumours is associated with poor prognosis. It has therefore been assumed that in cells the essential difference between Bcl-2 and Bcl-XL involves regulation of expression and that they are otherwise functionally similar. To examine this issue, we have compared the function of the proteins and of mutants of Bcl-2 and Bcl-XL specifically targeted to different subcellular sites.


We generated clones of the human breast cancer line MCF-7 stably expressing known amounts of Bcl-2, or Bcl-XL as determined by quantitative immunoblotting. Clones expressing equivalent amounts of wild-type and mutants of Bcl-2 and Bcl-XL with subcellular localization restricted to the cytoplasm, endoplasmic reticulum or outer mitochondrial membrane were studied in both MCF-7 and Rat-1 fibroblasts. In MCF-7 cells we measured the functional activities of these proteins in preventing apoptosis induced by four different agents (doxorubicin, ceramide, thapsigargin, TNF-α). Etoposide and low serum were used to compare the effect of Bcl-2, Bcl-XL and mutants located at the endoplasmic reticulum on induction of apoptosis in fibroblasts.


We noted both qualitative and quantitative differences in the functional activity of these two anti-apoptotic proteins in cells: Bcl-2 localized to the endoplasmic reticulum inhibits apoptosis induced by ceramide and thapsigargin but not by doxorubicin or TNFα, while Bcl-XL at the endoplasmic reticulum is active against all four drugs. In fibroblasts Bcl-2 localized to the ER did not prevent cell death due to etoposide whereas Bcl-XL in the same location did. Finally in MCF-7 cells, Bcl-XL is approximately ten times more active than Bcl-2 in repressing apoptosis induced by doxorubicin. This difference can be manifest as a large difference in clonal survival.


When examined in the same cellular context, Bcl-2 and Bcl-XL differ substantially in the potency with which they inhibit apoptosis, mediated in part by differences in the inhibition of specific subcellular pathways.