Skip to main content
  • Research article
  • Open access
  • Published:

Multiplicative synergistic risk of hepatocellular carcinoma development among hepatitis B and C co-infected subjects in HBV endemic area: a community-based cohort study

Abstract

Background

There has been limited study on the effect of infection with different hepatitis C virus (HCV) genotypes on the risk of hepatocellular carcinoma (HCC) in hepatitis B virus (HBV) endemic regions of Asia.

Methods

Hazard ratios of HCC development were estimated for HBV and HCV co-infected subjects among a community-based prospective cohort. HCV genotype was determined in HCV RNA-positive samples. Incident HCC cases were identified through linkage to the cancer registry.

Results

HCC incidence was 79 per 100,000 person-years in the study population (50 incident cases among 6,694 individuals within 63,170 person-years with an average of 9.4 years of follow-up); seroprevalence of HBsAg and anti-HCV was 5.2% and 5.6%. Adjusted hazard ratios of HCC by HBsAg positivity and anti-HCV positivity were 13.3 (CI: 7.3-24.4) and 6.7 (CI: 3.6-12.6). HRs of HBV and HCV monoinfection, and HBV/HCV coinfection were 17.1 (CI: 8.4-34.8), 10.4 (CI: 4.9-22.1) and 115.0 (CI: 32.5-407.3). Multiplicative synergistic effect of HBV/HCV coinfection on HCC risk was also observed (synergy index: 4.5, CI: 1.3-15.5). Infection with HCV genotype 1 (HR: 29.7, CI: 13.6-46.8) and mixed infection with genotype 1 and 2 (HR: 68.7, CI: 16.4-288.4) significantly elevated HCC risk, much higher than HBV infection.

Conclusions

The effect of differences in HCV genotype and the multiplicative synergistic effect of HBV/HCV coinfection on HCC risk shown in the present study underline the need for comprehensive identification of hepatitis infection status in order to prevent and control HCC in this HBV endemic area.

Peer Review reports

Background

Epidemiologic and experimental evidence has shown that chronic infection with hepatitis B and C virus (HBV, HCV) is a major risk factor for hepatocellular carcinoma (HCC) [1, 2]. The highest incidence rates of HCC come from Southeast Asia including China and the Republic of Korea, and sub-Saharan Africa, where HCC is frequently caused by HBV infection, and from Japan, where HCC is predominantly caused by HCV [3]. HBV and HCV infection increase HCC risk some 12- to 14-fold and this risk differs according to whether the infection is an HBV or HCV monoinfection, or an HBV/HCV coinfection, and depends on which genotypes of the viruses are involved, and their viral load [4–9].

In particular, distribution of HCV genotypes varies according to geographic regions, which raises several issues related to their transmission and treatment. There were not so many studies on risk difference in HCV genotypes in general population. Some studies, including prospective cohort and meta-analysis, have suggested that HCV genotype 1b plays the most important role in HCC development [8, 10, 11] but most studies included in the meta-analysis were based on patients with chronic hepatitis or liver cirrhosis [8].

In Korea, where the incidence rate of HCC is high (24.5 per 100,000 [12]), the prevalence of HCV (1.3% [13]) infection is lower than that of HBV (3.2% [14]). A recent meta-analysis of Korean data showed that the pooled relative risk (RR) (11.5 for both sexes) of HCC among individuals positive for antibodies against HCV (anti-HCV) was also lower than that among individuals positive for hepatitis B surface antigen (HBsAg) (24.4 in men and 33.7 in women) [15]. HCV genotypes 1b and 2a were reported to be the most prevalent among six known HCV genotypes and at least 30 subtypes [13], whereas genotype C was predominant (99%) among the HBV genotypes [16–18]. An additive effect of HBV/HCV coinfection, as well as a differing risk conferred by different HCV genotypes on HCC development, were suggested by a few epidemiologic studies, including a recent meta-analysis [5]. However, there are a very limited number of studies on the impact of HCV infection on HCC development in Korea. Indeed, all of the studies included in the aforementioned meta-analysis were case–control studies, the sample sizes of which were relatively small.

In this context, using a community-based prospective cohort design, the present study investigated HCC risk in relation to HBV infection, HCV infection and other risk factors, and evaluated the difference in risk between HBV or HCV monoinfection and HBV/HCV coinfection in the Republic of Korea. HCC risk according to HCV genotype was also investigated.

Methods

Ethics statement

The study protocol was approved by the Institutional Review Boards of the Seoul National University Hospital and the National Cancer Center of Korea. All study participants signed an informed consent form before inclusion into their respective cohort.

Study participants

A community-based prospective cohort study was conducted in a rural area of Korea between 1993 and 2003. Briefly, the cohort was designed to investigate the relationship between environmental exposures, lifestyle factors, host factors and the risk of cancer in Korea. Members of the cohort aged 30 years or older who were residents of Haman (county) in Kyeongsangnam-do (province), a rural area in the Southeastern part of the country, with the highest reported HCC incidence, were included in the present study. After excluding 105 cohort members with existing cancer at enrollment, 28 cohort members who developed incident cancer within 6 months of enrollment (considering asymptomatic period and late detection of cancer), and 51 with incident non-Hodgkin lymphoma and cholangiocarcinoma (as these cancers are also caused by HCV infection) [19], 6 694 cancer-free members from the cohort were included in the final analysis.

Data collection

Cohort members completed a questionnaire and provided a blood/urine sample during a health examination at the time of enrollment into the study. Detailed data collection was described previously [20, 21].

Socio-demographics, tobacco smoking and alcohol drinking, HBV and HCV infection status, results of liver function test (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]), fasting blood sugar (FBS), and history of acupuncture/transfusion were included in this analysis. Alcohol consumption was categorized as follows: no drinking (0 g/day), moderate drinking (0.1-23.9 g/day) and heavy drinking (≥24.0 g/day) [22]. Body mass index (BMI) was calculated from direct measures of height and weight and categorized according to the World Health Organization standard for Asians as follows: underweight (<18.5 kg/m2), normal (18.5-22.9 kg/m2), overweight (23.0-24.9 kg/m2), and obese (≥25.0 kg/m2) [23].

HBV and HCV testing

Enzyme immunoassay (AxSYM, Abbott Laboratories, Abbott Park, Illinois, USA) was used to determine HBV and HCV infection. Samples were tested for seropositivity to HBsAg, antibodies against hepatitis B surface antigen (anti-HBs) and anti-HCV for all study participants. HCV RNA viremia was confirmed by nested reverse transcript-polymerase chain reaction or by nucleic acid testing (NAT) (COBAS AMPLICOR HCV MONITOR test, version 2.0, Roche Molecular Systems, Branchburg, New Jersey, USA) in anti-HCV-positive samples. HCV genotypes were determined by the Okamoto’s method [24] or by line-probe assay (VERSANT HCV genotype assay (LiPA), Innogenetics, Ghent, Belgium) in HCV RNA-positive samples.

Cancer ascertainment

On December 31, 2008, 50 HCC cases were identified in the study population through computerized record linkage to the Korea National Cancer Incidence Database of the Korean Central Cancer Registry, a very reliable registry showing 95% completeness [12].

Statistical analysis

The Cox proportional hazards model was used to estimate the adjusted hazard ratios and corresponding 95% confidence intervals (CIs) in order to assess the independent contribution of each risk factor to the development of HCC, using SAS statistical software version 9.1 (SAS Institute, Inc., North Carolina, USA). The adjusted population-attributable fraction and the 95% CIs of HCC associated with HBV or HCV infection in the study population was estimated using STATA software version 10.0 (StataCorp, Texas, USA). The synergistic effect of HBV/HCV coinfection was computed by applying the synergy index (SI) proposed by Rothman [25, 26].

Results

The demographic characteristics of the cohort are shown in Table 1. Tobacco smoking, alcohol drinking, obesity and history of acupuncture were very common (28.9%, 31.3%, 29.5% and 49.1%, respectively) in the study population, whereas history of blood transfusion was relatively rare (4.1%). The seroprevalence of HBsAg, anti-HBs and anti-HCV was 5.2%, 56.4% and 5.6%, respectively (Table 1).

Table 1 General characteristics of 6,694 study participants in Korea, 1993-2003

The incidence of HCC in the study population was 79.2 per 100,000 person-years ([34 men and 16 women] 50 incident cases among 6,694 individuals within 63,170 person-years with an average of 9.4 years of follow-up).

Table 2 shows the HRs and corresponding 95% CIs of HCC according to selected risk factors. Adjusted HRs of developing HCC by HBsAg positivity and by anti-HCV positivity were 13.3 (95% CI=7.3-24.4) and 6.7 (95% CI=3.6-12.6), respectively. Higher AST (≥30u/L) and ALT (≥35u/L) levels were significantly related to increased HCC risk. However the other potential risk factors except heavy alcohol drinking (aHR=2.2, 95% CI=1.1-4.4) were not significantly related to HCC risk in the multivariate model.

Table 2 Relative risks (RRs) and 95% confidence intervals (CIs) of hepatocellular carcinoma (HCC) according to selected characteristics

There were 14 HBV/HCV coinfected study participants, of which 3 were HCC cases. Age- and sex-adjusted HRs of HBV monoinfection, HCV monoinfection and HBV/HCV coinfection for HCC were 17.1 (95% CI=8.4-34.8), 10.4 (95% CI=4.9-22.1) and 115.0 (95% CI=32.5-407.3), respectively. The synergistic effect of HBV/HCV coinfection was more than additive and was statistically significant (SI=4.5, 95% CI=1.3-15.5) (Table 3).

Table 3 Hazard Ratios (HRs) and 95% confidence intervals (CIs) of hepatocellular carcinoma (HCC) according to hepatitis B and C virus infection status

Additional file 1: Table S1 shows the distribution of HCV genotypes among 142 HCV RNA-positive subjects in the study population. As shown in Table 4, HCV genotype 1 (mostly 1b) significantly elevated HCC risk (adjusted HR=29.7, 95% CI=13.6-46.8), whereas genotype 2 did not. HR of HCC in individuals multiply infected with HCV genotype 1 and 2 (adjusted HR=68.7, 95% CI=16.4-288.4) was much higher than in monotypic infection with genotype 1 but the 95% CI was very wide and overlapped. The adjusted HR for past history of HCV infection (anti-HCV-positive but HCV RNA-negative) was 2.6 (95% CI=0.6-11.5) (Table 4).

Table 4 Hazard ratios (HRs) and 95% confidence intervals (CIs) of hepatocellular carcinoma (HCC) according to hepatitis C virus infection status and genotype

The population-attributable fraction of HCC due to HBV and HCV infection were 36.9% (95% CI=20.0-50.2%) and 26.6% (95% CI=11.3-39.2%), respectively, in the study population (data not shown).

Discussion

The present study provides a comprehensive estimation of HCC risk according to HBV and HCV mono- and coinfection, using data from a community-based prospective cohort study in an area of Korea where HCC incidence is high. HBV is by far the most important risk factor for HCC in Korea. To our knowledge, this is the first study to explore the risk of HCV and discover the synergistic effect of HBV/HCV coinfection for HCC in a prospective cohort study in the general Korean population. Furthermore, in the current study it was evident that HCV genotype 1b increased HCC risk significantly more than genotype 2.

The role of chronic infection with HBV in the etiology of HCC is well established [1, 2]. A community-based prospective cohort study titled the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer-Hepatitis B Virus (REVEAL-HBV) study in Taiwan has reported high serum HBV DNA level, HBV genotype C, precore G1896A mutant and basal core promoter A1762T/G1764A double mutant as predictors of HCC risk [9, 27]. The adjusted HR (13.7) of HCC by HBsAg positivity in the present study was compatible with previous study results, including two recent meta-analyses: one that included 37 case–control and 10 cohort studies conducted worldwide [5], and another that used Korean data [15]. In addition, the risk of HCC by HBV infection was around two-fold higher than by HCV infection in present study.

One recent meta-analysis estimated the RR of HCC to be as much as 12-fold higher in people infected with HCV [5]. However, in Korea, there was no report of the RR of HCV, although some case–control studies reported odds ratios for HCV [28–30], and a meta-analysis reported a pooled odds ratio of HCC of 11.5 for anti-HCV-positive individuals [15]. In this respect, the present study contributes more evident data on the effect of HCV infection on HCC risk in Korea to the scientific literature by reporting RRs from a prospective cohort study, although the RR of HCC by anti-HCV positivity was lower than expected.

The synergistic effect of HBV/HCV coinfection on HCC risk (SI=4.5, 95% CI=1.3-15.5) identified in this study was another meaningful finding. Indeed, HBV/HCV coinfection is not uncommon, particularly in countries with a high prevalence of HBV or HCV, as the two viruses share with some modes of transmission [5].

It was not clear if there is a risk difference between HCV genotype 1 and 2 regarding the previous studies in Korean, even though HCV genotype 1b and 2a are dominant. The present study suggested that the HR of HCC was significantly higher in individuals infected with HCV genotype 1 (adjusted HR=29.7, 95% CI=13.6-46.8) than genotype 2 (adjusted HR=2.2, 95% CI=0.3-16.2). This strongly supports the results from a recent meta-analysis, which suggested that subjects infected with HCV genotype 1b had almost double the HCC risk of those infected with other HCV genotypes [8]. Moreover, the present study showed multiplicative increase in HR of HCC in individuals who had mixed infection with HCV genotype 1 and 2 (adjusted HR=68.7, 95% CI=16.4-288.4), compared to HR of solitary genotype 1 or 2 infection. To the best of our knowledge, our study is the first to show this multiplicative relationship. HCV genotype is an important determinant of the virologic response to HCV treatment, whereas differences in disease pathogenesis among genotypes may also exist. Genotype 1 is associated with a more aggressive disease, worse response to therapy, and higher risk of cirrhosis and HCC development [8]. There are limited studies on HCV mixed genotype infection among high-risk individuals [31, 32] but pathogenecity of mixed infection and its effect on disease progression and treatment have not yet been elucidated. On the other hand, HBV genotype was not evaluated in the present study as genotype C was predominant (99%) among the HBV genotypes in Koreans [16–18]. In the REVEAL study, HBV genotype C showed higher risk of developing HCC (aRR=1.76; 95% CI=1.19-2.61) and cirrhosis compare to HBV genotype B [33].

There is convincing evidence that alcohol drinking and tobacco smoking increase the risk of primary HCC [34–36] and synergistic effects between hepatitis infection and tobacco smoking or alcohol drinking in the development of HCC has been recently suggested [37–41]. Heavy alcohol drinking significantly elevated HCC risk after adjustment in this study. Tobacco smoking elevated HCC risk in the crude analysis, but was not significant after adjustment. Neither FBS level or obesity were related to HCC risk in this study, although there is growing evidence suggesting that obesity and diabetes mellitus (DM) might be independent risk factors for HCC [20, 39, 42–45]. There was a substantial amount of missing information on FBS (27% of the study population). However, the HCC risk was not statistically significant (aHR=1.7, 95% CI=0.9-3.4) in the group of unknown FBS. In addition, the HCC risk was not elevated among subjects with DM history, as a proxy of FBS in the independent regression analysis (data not shown). Insignificant result of DM and obesity in risk of HCC development may be due to predominant role of HBV and HCV as a risk factor of HCC in this study population. Dietary ingestion of aflatoxins, one of the risk factor of HCC in developing countries, is very rare in Korea.

The present study offers comprehensive scientific evidence on the effect of HBV and HCV infection, as well as some other potential risk factors, on HCC development. Nevertheless, it has several limitations that should be considered when interpreting its data. Firstly, the size of the case population was not very large (50 HCC cases). In particular, a very small number of HCC cases were identified in each category of HCV genotype, including only 1 HCC case in the group infected with HCV genotype 2. Coinfection with HCV genotype 1 and 2 showed higher HR than genotype 1 alone, but their 95% CI were very wide and overlapping due to small number of HCC cases. However, considering the relatively lower prevalence of HCV infection in Korea, and the results of this community-based long-term prospective follow-up study are valid enough to support a causal relationship. Secondly, the risk factors were investigated at cohort enrollment, with no repeated measure. Thus there were no considerations of updated information for changes in infection status, interventions for liver diseases and/or health behaviors that took place after study recruitment. Thirdly, viral load of HBV and HCV infection was not evaluated in this study. Serum HBV DNA level is a major predictor of HCC development [9]. Patients with a high viral load of HCV respond poorly to interferon therapy [46] and had a significantly higher HCC risk (RR, 2.35; 95% CI, 1.02-5.43) than did those with a low viral load after interferon treatment [47]. However the current study could not provide HCC risk by viral load of HBV and HCV.

Compared to hospital-based case–control studies in Korea (HBsAg 65.4-72.3%; anti-HCV 7.6-19.3%) [28–30], the seroprevalence of HBsAg (39.1%) and anti-HCV (32.6%) among HCC cases in the present study was relatively low. Although the serological evidence of chronic infection with HBV and HCV remains relatively constant over time, there is a possibility that infection status can change between baseline and at diagnosis of HCC. Otherwise occult HBV or HCV infection may exist in HCC cases that are negative for markers of HBV and HCV infection. Recently there has been growing evidence of occult HBV and HCV infection. Occult HBV infection was found in 0.7% of HBsAg-negative individuals in the general adult population in Korea [48]. Although the mechanism and clinical implications have not yet been elucidated, occult HBV infection can also be transmitted and may contribute to the development of HBV-associated diseases such as HCC [49, 50].

Nevertheless, this study also has much strength. It is a prospective community-based cohort study that was able to link to a national cancer registry to evaluate the causal relationship of HBV, HCV and other behavioral risk factors with HCC development, while all previous cohort studies reporting the RRs of HCC by viral hepatitis infection have used secondary data (i.e., medical insurance claims) and included no information about HCV infection and related behavioral risk factors (e.g., blood transfusion and acupuncture) [45, 51, 52]. In addition, the present study provides additional evidence on HCC in an HBV endemic area with comprehensive analyses of HCV infection, especially for different HCV genotypes and coinfection with HBV.

Conclusions

The present findings add to previous observations suggesting that HBV infection is by far the most important risk factors for HCC in HCC prevalent and HBV endemic areas. Furthermore, investigation of the distribution of different HCV genotypes, as well as the differences in HCC risk by HCV genotype and its coinfection with HBV, may significantly contribute to disease control, or progresses in prevention, such as the development of an effective vaccine, or implementation of an HCC screening program, to improve disease outcome.

Abbreviations

anti-HBs:

Antibodies against HBsAg

anti-HCV:

Antibodies against HCV

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BMI:

Body mass index

CI:

Confidence interval

HBsAg:

Hepatitis B surface antigen

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HCC:

Hepatocellular carcinoma

HR:

Hazard ratio

RR:

Relative risk

SI:

Synergy index.

References

  1. IARC: IARC monographs on the evaluation of carcinogenic risks to humans, Volume 59, Hepatitis viruses. 1994, Lyon: International Agency for Research on Cancer

    Google Scholar 

  2. IARC: IARC monographs on the evaluation of carcinogenic risks to humans, Volume 100B, Biological agents. 2011, Lyon: International Agency for Research on Cancer

    Google Scholar 

  3. Parkin DM: The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006, 118 (12): 3030-3044. 10.1002/ijc.21731.

    Article  CAS  PubMed  Google Scholar 

  4. Bruno S, Crosignani A, Maisonneuve P, Rossi S, Silini E, Mondelli MU: Hepatitis C virus genotype 1b as a major risk factor associated with hepatocellular carcinoma in patients with cirrhosis: a seventeen-year prospective cohort study. Hepatology. 2007, 46 (5): 1350-1356. 10.1002/hep.21826.

    Article  CAS  PubMed  Google Scholar 

  5. Cho LY, Yang JJ, Ko KP, Park B, Shin A, Lim MK, Oh JK, Park S, Kim YJ, Shin HR, et al: Coinfection of hepatitis B and C viruses and risk of hepatocellular carcinoma: systematic review and meta-analysis. Int J Cancer. 2011, 128 (1): 176-184. 10.1002/ijc.25321.

    Article  CAS  PubMed  Google Scholar 

  6. Donato F, Boffetta P, Puoti M: A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int J Cancer. 1998, 75 (3): 347-354. 10.1002/(SICI)1097-0215(19980130)75:3<347::AID-IJC4>3.0.CO;2-2.

    Article  CAS  PubMed  Google Scholar 

  7. Lin CL, Kao JH: The clinical implications of hepatitis B virus genotype: Recent advances. J Gastroenterol Hepatol. 2011, 26 (Suppl 1): 123-130.

    Article  PubMed  Google Scholar 

  8. Raimondi S, Bruno S, Mondelli MU, Maisonneuve P: Hepatitis C virus genotype 1b as a risk factor for hepatocellular carcinoma development: a meta-analysis. J Hepatol. 2009, 50 (6): 1142-1154. 10.1016/j.jhep.2009.01.019.

    Article  CAS  PubMed  Google Scholar 

  9. Iloeje UH, Yang HI, Chen CJ: Natural history of chronic hepatitis B: what exactly has REVEAL Revealed?. Liver Int. 2012, 32 (9): 1333-1341. 10.1111/j.1478-3231.2012.02805.x.

    Article  PubMed  Google Scholar 

  10. Bahri O, Ezzikouri S, Alaya-Bouafif NB, Iguer F, Feydi AE, Mestiri H, Benazzouz M, Khalfallah T, Afifi R, Elkihal L, et al: First multicenter study for risk factors for hepatocellular carcinoma development in North Africa. World J Hepatol. 2011, 3 (1): 24-30.

    PubMed  PubMed Central  Google Scholar 

  11. Wang CH, Mo LR, Chang KK, Lin RC, Kuo JJ: A cohort study to investigate hepatocellular carcinoma risk in hepatitis C patients. Hepato-Gastroenterology. 2011, 58 (107–108): 904-908.

    PubMed  Google Scholar 

  12. Jung KW, Park S, Kong HJ, Won YJ, Lee JY, Park EC, Lee JS: Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2008. Cancer Res Treat. 2011, 43 (1): 1-11. 10.4143/crt.2011.43.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shin HR: Epidemiology of hepatitis C virus in Korea. Intervirology. 2006, 49 (1–2): 18-22.

    PubMed  Google Scholar 

  14. Korea Centers for Disease Control and Prevention: Korea Health Statistics 2009: Korea National Health and Nutrition Examination Survey (KNHANES IV-3). 2010, Seoul

    Google Scholar 

  15. Shin A, Park S, Shin HR, Park EH, Park SK, Oh JK, Lim MK, Choi BY, Boniol M, Boffetta P: Population attributable fraction of infection-related cancers in Korea. Ann Oncol. 2011, 22 (6): 1435-1442. 10.1093/annonc/mdq592.

    Article  CAS  PubMed  Google Scholar 

  16. Cho JH, Yoon KH, Lee KE, Park DS, Lee YJ, Moon HB, Lee KR, Choi CS, Cho EY, Kim HC: Distribution of hepatitis B virus genotypes in Korea. Korean J Hepatol. 2009, 15 (2): 140-147. 10.3350/kjhep.2009.15.2.140.

    Article  PubMed  Google Scholar 

  17. Kim H, Jee YM, Song BC, Shin JW, Yang SH, Mun HS, Kim HJ, Oh EJ, Yoon JH, Kim YJ, et al: Molecular epidemiology of hepatitis B virus (HBV) genotypes and serotypes in patients with chronic HBV infection in Korea. Intervirology. 2007, 50 (1): 52-57. 10.1159/000096313.

    Article  PubMed  Google Scholar 

  18. Song BC, Cui XJ, Kim H: Hepatitis B virus genotypes in Korea: an endemic area of hepatitis B virus infection. Intervirology. 2005, 48 (2–3): 133-137.

    Article  PubMed  Google Scholar 

  19. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, et al: A review of human carcinogens–Part B: biological agents. Lancet Oncol. 09, 10 (4): 321-322. 10.1016/S1470-2045(09)70096-8.

    Article  Google Scholar 

  20. Gwack J, Hwang SS, Ko KP, Jun JK, Park SK, Chang SH, Shin HR, Yoo KY: Fasting serum glucose and subsequent liver cancer risk in a Korean prospective cohort. J Prev Med Public Health. 2007, 40 (1): 23-28. 10.3961/jpmph.2007.40.1.23.

    Article  PubMed  Google Scholar 

  21. Yoo KY, Shin HR, Chang SH, Lee KS, Park SK, Kang D, Lee DH: Korean Multi-center Cancer Cohort Study including a Biological Materials Bank (KMCC-I). Asian Pac J Cancer Prev. 2002, 3 (1): 85-92.

    PubMed  Google Scholar 

  22. Alcohol and Public Health: Frequently Asked Questions. http://www.cdc.gov/alcohol/faqs.htm,

  23. WHO expert consultation: Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004, 363 (9403): 157-163.

    Article  Google Scholar 

  24. Okamoto H, Tokita H, Sakamoto M, Horikita M, Kojima M, Iizuka H, Mishiro S: Characterization of the genomic sequence of type V (or 3a) hepatitis C virus isolates and PCR primers for specific detection. J Gen Virol. 1993, 74: 2385-2390. 10.1099/0022-1317-74-11-2385.

    Article  CAS  PubMed  Google Scholar 

  25. Andersson T, Alfredsson L, Kallberg H, Zdravkovic S, Ahlbom A: Calculating measures of biological interaction. Eur J Epidemiol. 2005, 20 (7): 575-579. 10.1007/s10654-005-7835-x.

    Article  PubMed  Google Scholar 

  26. Rothman KJ: The estimation of synergy or antagonism. Am J Epidemiol. 1976, 103 (5): 506-511.

    CAS  PubMed  Google Scholar 

  27. Chen CJ, Yang HI: Natural history of chronic hepatitis B REVEALed. J Gastroenterol Hepatol. 2011, 26 (4): 628-638. 10.1111/j.1440-1746.2011.06695.x.

    Article  PubMed  Google Scholar 

  28. Shin HR, Lee CU, Park HJ, Seol SY, Chung JM, Choi HC, Ahn YO, Shigemastu T: Hepatitis B and C virus, Clonorchis sinensis for the risk of liver cancer: a case–control study in Pusan, Korea. Int J Epidemiol. 1996, 25 (5): 933-940. 10.1093/ije/25.5.933.

    Article  CAS  PubMed  Google Scholar 

  29. Ahn HS, Kim MH, Kim YS, Kim JS: A Case–control Study on Association Between Hepatocellular Carcinoma and Infection of Hepatitis B and Hepatitis C Virus. Korean J Prev Med. 1997, 30 (1): 1-16.

    Google Scholar 

  30. Huh K, Lee JK, Choi SY, Hong SI, Lee DS: A Study on the Prevalence of HBsAg and Anti-HCV in Patients with Hepatocellular Carcinoma: Comparative Study with Healthy Blood Donors. Korean J Clin Pathol. 1998, 18 (3): 458-463.

    Google Scholar 

  31. Pham ST, Bull RA, Bennett JM, Rawlinson WD, Dore GJ, Lloyd AR, White PA: Frequent multiple hepatitis C virus infections among injection drug users in a prison setting. Hepatology. 2010, 52 (5): 1564-1572. 10.1002/hep.23885.

    Article  PubMed  Google Scholar 

  32. Qian KP, Natov SN, Pereira BJ, Lau JY: Hepatitis C virus mixed genotype infection in patients on haemodialysis. J Viral Hepat. 2000, 7 (2): 153-160. 10.1046/j.1365-2893.2000.00208.x.

    Article  CAS  PubMed  Google Scholar 

  33. Yang HI, Yeh SH, Chen PJ, Iloeje UH, Jen CL, Su J, Wang LY, Lu SN, You SL, Chen DS, et al: Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. J Natl Cancer Inst. 2008, 100 (16): 1134-1143. 10.1093/jnci/djn243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tanaka K, Tsuji I, Wakai K, Nagata C, Mizoue T, Inoue M, Tsugane S: Alcohol drinking and liver cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol. 2008, 38 (12): 816-838. 10.1093/jjco/hyn108.

    Article  PubMed  Google Scholar 

  35. IARC: IARC monographs on the evaluation of carcinogenic risks to humans, Volume 96, Alcohol Consumption and Ethyl Carbamate. 2010, Lyon: International Agency for Research on Cancer

    Google Scholar 

  36. IARC: IARC monographs on the evaluation of carcinogenic risks to humans, Volume 83, Tobacco smoke and involuntary smoking. 2004, Lyon: International Agency for Research on Cancer

    Google Scholar 

  37. Fujita Y, Shibata A, Ogimoto I, Kurozawa Y, Nose T, Yoshimura T, Suzuki H, Iwai N, Sakata R, Ichikawa S, et al: The effect of interaction between hepatitis C virus and cigarette smoking on the risk of hepatocellular carcinoma. Br J Cancer. 2006, 94 (5): 737-739.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hassan MM, Spitz MR, Thomas MB, El-Deeb AS, Glover KY, Nguyen NT, Chan W, Kaseb A, Curley SA, Vauthey JN, et al: Effect of different types of smoking and synergism with hepatitis C virus on risk of hepatocellular carcinoma in American men and women: case–control study. Int J Cancer. 2008, 123 (8): 1883-1891. 10.1002/ijc.23730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marrero JA, Fontana RJ, Fu S, Conjeevaram HS, Su GL, Lok AS: Alcohol, tobacco and obesity are synergistic risk factors for hepatocellular carcinoma. J Hepatol. 2005, 42 (2): 218-224. 10.1016/j.jhep.2004.10.005.

    Article  CAS  PubMed  Google Scholar 

  40. Hassan MM, Hwang LY, Hatten CJ, Swaim M, Li D, Abbruzzese JL, Beasley P, Patt YZ: Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. Hepatology. 2002, 36 (5): 1206-1213. 10.1053/jhep.2002.36780.

    Article  CAS  PubMed  Google Scholar 

  41. Yuan JM, Govindarajan S, Arakawa K, Yu MC: Synergism of alcohol, diabetes, and viral hepatitis on the risk of hepatocellular carcinoma in blacks and whites in the U.S. Cancer. 2004, 101 (5): 1009-1017. 10.1002/cncr.20427.

    Article  PubMed  Google Scholar 

  42. Chen CL, Yang HI, Yang WS, Liu CJ, Chen PJ, You SL, Wang LY, Sun CA, Lu SN, Chen DS, et al: Metabolic factors and risk of hepatocellular carcinoma by chronic hepatitis B/C infection: a follow-up study in Taiwan. Gastroenterology. 2008, 135 (1): 111-121. 10.1053/j.gastro.2008.03.073.

    Article  CAS  PubMed  Google Scholar 

  43. Ohki T, Tateishi R, Sato T, Masuzaki R, Imamura J, Goto T, Yamashiki N, Yoshida H, Kanai F, Kato N, et al: Obesity is an independent risk factor for hepatocellular carcinoma development in chronic hepatitis C patients. Clin Gastroenterol Hepatol. 2008, 6 (4): 459-464. 10.1016/j.cgh.2008.02.012.

    Article  PubMed  Google Scholar 

  44. Polesel J, Zucchetto A, Montella M, Dal Maso L, Crispo A, La Vecchia C, Serraino D, Franceschi S, Talamini R: The impact of obesity and diabetes mellitus on the risk of hepatocellular carcinoma. Ann Oncol. 2009, 20 (2): 353-357.

    Article  CAS  PubMed  Google Scholar 

  45. Jee SH, Ohrr H, Sull JW, Samet JM: Cigarette smoking, alcohol drinking, hepatitis B, and risk for hepatocellular carcinoma in Korea. J Natl Cancer Inst. 2004, 96 (24): 1851-1856. 10.1093/jnci/djh334.

    Article  PubMed  Google Scholar 

  46. Kato N, Yokosuka O, Omata M, Hosoda K, Ohto M: Detection of hepatitis C virus ribonucleic acid in the serum by amplification with polymerase chain reaction. J Clin Invest. 1990, 86 (5): 1764-1767. 10.1172/JCI114903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kasahara A, Hayashi N, Mochizuki K, Takayanagi M, Yoshioka K, Kakumu S, Iijima A, Urushihara A, Kiyosawa K, Okuda M, et al: Risk factors for hepatocellular carcinoma and its incidence after interferon treatment in patients with chronic hepatitis C. Hepatology. 1998, 27 (5): 1394-1402. 10.1002/hep.510270529.

    Article  CAS  PubMed  Google Scholar 

  48. Song EY, Yun YM, Park MH, Seo DH: Prevalence of occult hepatitis B virus infection in a general adult population in Korea. Intervirology. 2009, 52 (2): 57-62. 10.1159/000214633.

    Article  CAS  PubMed  Google Scholar 

  49. Allain JP: Occult hepatitis B virus infection: implications in transfusion. Vox Sang. 2004, 86 (2): 83-91. 10.1111/j.0042-9007.2004.00406.x.

    Article  PubMed  Google Scholar 

  50. Torbenson M, Thomas DL: Occult hepatitis B. Lancet Infect Dis. 2002, 2 (8): 479-486. 10.1016/S1473-3099(02)00345-6.

    Article  PubMed  Google Scholar 

  51. Lee MS, Kim DH, Kim H, Lee HS, Kim CY, Park TS, Yoo KY, Park BJ, Ahn YO: Hepatitis B vaccination and reduced risk of primary liver cancer among male adults: a cohort study in Korea. Int J Epidemiol. 1998, 27 (2): 316-319. 10.1093/ije/27.2.316.

    Article  CAS  PubMed  Google Scholar 

  52. Yoo KY, Heon K, Lee MS, Park BJ, Ahn YO, Lee HS, Kim CY, Park TS: A reconstructed cohort study on the hepatitis B virus infection as a risk factor of liver cancer in Korea. J Korean Med Sci. 1991, 6 (4): 319-324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Pre-publication history

Download references

Acknowledgements

This study was financially supported by the National Cancer Center, Republic of Korea (grant no. NCC-1010230). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors would like to give special thanks to all collaborators of the Haman public health center for their supporting to implement field survey. We are also very grateful to Mi-Jin Bae (National Cancer Center, Republic of Korea) for her wonderful statistical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Rim Shin.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JKO carried out the field survey, conducted the analysis of the data and drafted the manuscript. HRS designed and conducted the study, and drafted and revised the manuscript. MKL participated in conducting the field study and helped to revision the manuscript. HC performed the statistical analysis. DIK carried out the serologic tests. YJ and HY carried out the genotyping. KYY conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Electronic supplementary material

12885_2012_3493_MOESM1_ESM.doc

Additional file 1: Table S1. Distribution of hepatitis C virus (HCV) genotypes among 142 HCV RNA-positive subjects in the study population. (DOC 44 KB)

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Oh, JK., Shin, HR., Lim, M.K. et al. Multiplicative synergistic risk of hepatocellular carcinoma development among hepatitis B and C co-infected subjects in HBV endemic area: a community-based cohort study. BMC Cancer 12, 452 (2012). https://doi.org/10.1186/1471-2407-12-452

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1471-2407-12-452

Keywords