Email updates

Keep up to date with the latest news and content from BMC Cancer and BioMed Central.

Open Access Highly Accessed Research article

Epigenetic regulation of CD44 in Hodgkin and non-Hodgkin lymphoma

Sonja Eberth1*, Björn Schneider1, Andreas Rosenwald2, Elena M Hartmann2, Julia Romani1, Margarete Zaborski1, Reiner Siebert3, Hans G Drexler1 and Hilmar Quentmeier1

Author Affiliations

1 DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany

2 Institute of Pathology, University of Würzburg, Würzburg, Germany

3 Institute of Human Genetics, Christian-Albrechts University, Kiel, Germany

For all author emails, please log on.

BMC Cancer 2010, 10:517  doi:10.1186/1471-2407-10-517

Published: 29 September 2010

Abstract

Background

Epigenetic inactivation of tumor suppressor genes (TSG) by promoter CpG island hypermethylation is a hallmark of cancer. To assay its extent in human lymphoma, methylation of 24 TSG was analyzed in lymphoma-derived cell lines as well as in patient samples.

Methods

We screened for TSG methylation using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) in 40 lymphoma-derived cell lines representing anaplastic large cell lymphoma, Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), Hodgkin lymphoma and mantle cell lymphoma (MCL) as well as in 50 primary lymphoma samples. The methylation status of differentially methylated CD44 was verified by methylation-specific PCR and bisulfite sequencing. Gene expression of CD44 and its reactivation by DNA demethylation was determined by quantitative real-time PCR and on the protein level by flow cytometry. Induction of apoptosis by anti-CD44 antibody was analyzed by annexin-V/PI staining and flow cytometry.

Results

On average 8 ± 2.8 of 24 TSG were methylated per lymphoma cell line and 2.4 ± 2 of 24 TSG in primary lymphomas, whereas 0/24 TSG were methylated in tonsils and blood mononuclear cells from healthy donors. Notably, we identified that CD44 was hypermethylated and transcriptionally silenced in all BL and most FL and DLBCL cell lines, but was usually unmethylated and expressed in MCL cell lines. Concordant results were obtained from primary lymphoma material: CD44 was not methylated in MCL patients (0/11) whereas CD44 was frequently hypermethylated in BL patients (18/29). In cell lines with CD44 hypermethylation, expression was re-inducible at mRNA and protein levels by treatment with the DNA demethylating agent 5-Aza-2'-deoxycytidine, confirming epigenetic regulation of CD44. CD44 ligation assays with a monoclonal anti-CD44 antibody showed that CD44 can mediate apoptosis in CD44+ lymphoma cells. CD44 hypermethylated, CD44- lymphoma cell lines were consistently resistant towards anti-CD44 induced apoptosis.

Conclusion

Our data show that CD44 is epigenetically regulated in lymphoma and undergoes de novo methylation in distinct lymphoma subtypes like BL. Thus CD44 may be a promising new epigenetic marker for diagnosis and a potential therapeutic target for the treatment of specific lymphoma subtypes.