Open Access Highly Accessed Research article

SLUG/SNAI2 and Tumor Necrosis Factor Generate Breast Cells With CD44+/CD24- Phenotype

Poornima Bhat-Nakshatri1, Hitesh Appaiah1, Christopher Ballas2, Patricia Pick-Franke4, Robert Goulet1, Sunil Badve3, Edward F Srour2 and Harikrishna Nakshatri14*

Author Affiliations

1 Department of Surgery, Indiana University School of Medicine, West Walnut Street, Indianapolis, IN 46202, USA

2 Department of Medicine, Indiana University School of Medicine, West Walnut Street, Indianapolis, IN 46202, USA

3 Department of Pathology, Indiana University School of Medicine, Barnhill Drive, Indianapolis, IN 46202, USA

4 Department of Biochemistry and Molecular Biology, Barnhill Drive, Indiana University School of Medicine, Indianapolis, IN 46202, USA

For all author emails, please log on.

BMC Cancer 2010, 10:411  doi:10.1186/1471-2407-10-411

Published: 6 August 2010

Abstract

Background

Breast cancer cells with CD44+/CD24- cell surface marker expression profile are proposed as cancer stem cells (CSCs). Normal breast epithelial cells that are CD44+/CD24- express higher levels of stem/progenitor cell associated genes. We, amongst others, have shown that cancer cells that have undergone epithelial to mesenchymal transition (EMT) display the CD44+/CD24- phenotype. However, whether all genes that induce EMT confer the CD44+/CD24- phenotype is unknown. We hypothesized that only a subset of genes associated with EMT generates CD44+/CD24- cells.

Methods

MCF-10A breast epithelial cells, a subpopulation of which spontaneously acquire the CD44+/CD24- phenotype, were used to identify genes that are differentially expressed in CD44+/CD24- and CD44-/CD24+ cells. Ingenuity pathway analysis was performed to identify signaling networks that linked differentially expressed genes. Two EMT-associated genes elevated in CD44+/CD24- cells, SLUG and Gli-2, were overexpressed in the CD44-/CD24+ subpopulation of MCF-10A cells and MCF-7 cells, which are CD44-/CD24+. Flow cytometry and mammosphere assays were used to assess cell surface markers and stem cell-like properties, respectively.

Results

Two thousand thirty five genes were differentially expressed (p < 0.001, fold change ≥ 2) between the CD44+/CD24- and CD44-/CD24+ subpopulations of MCF-10A. Thirty-two EMT-associated genes including SLUG, Gli-2, ZEB-1, and ZEB-2 were expressed at higher levels in CD44+/CD24- cells. These EMT-associated genes participate in signaling networks comprising TGFβ, NF-κB, and human chorionic gonadotropin. Treatment with tumor necrosis factor (TNF), which induces NF-κB and represses E-cadherin, or overexpression of SLUG in CD44-/CD24+ MCF-10A cells, gave rise to a subpopulation of CD44+/CD24- cells. Overexpression of constitutively active p65 subunit of NF-κB in MCF-10A resulted in a dramatic shift to the CD44+/CD24+ phenotype. SLUG overexpression in MCF-7 cells generated CD44+/CD24+ cells with enhanced mammosphere forming ability. In contrast, Gli-2 failed to alter CD44 and CD24 expression.

Conclusions

EMT-mediated generation of CD44+/CD24- or CD44+/CD24+ cells depends on the genes that induce or are associated with EMT. Our studies reveal a role for TNF in altering the phenotype of breast CSC. Additionally, the CD44+/CD24+ phenotype, in the context of SLUG overexpression, can be associated with breast CSC "stemness" behavior based on mammosphere forming ability.