Email updates

Keep up to date with the latest news and content from BMC Cancer and BioMed Central.

Open Access Research article

Identification of an autoantibody panel to separate lung cancer from smokers and nonsmokers

William N Rom1*, Judith D Goldberg1, Doreen Addrizzo-Harris1, Heather N Watson1, Michael Khilkin1, Alissa K Greenberg1, David P Naidich1, Bernard Crawford1, Ellen Eylers1, Daorong Liu2 and Eng M Tan2

Author Affiliations

1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Radiology, Thoracic Surgery, and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA

2 Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA

For all author emails, please log on.

BMC Cancer 2010, 10:234  doi:10.1186/1471-2407-10-234

Published: 26 May 2010

Abstract

Background

Sera from lung cancer patients contain autoantibodies that react with tumor associated antigens (TAAs) that reflect genetic over-expression, mutation, or other anomalies of cell cycle, growth, signaling, and metabolism pathways.

Methods

We performed immunoassays to detect autoantibodies to ten tumor associated antigens (TAAs) selected on the basis of previous studies showing that they had preferential specificity for certain cancers. Sera examined were from lung cancer patients (22); smokers with ground-glass opacities (GGOs) (46), benign solid nodules (55), or normal CTs (35); and normal non-smokers (36). Logistic regression models based on the antibody biomarker levels among the high risk and lung cancer groups were developed to identify the combinations of biomarkers that predict lung cancer in these cohorts.

Results

Statistically significant differences in the distributions of each of the biomarkers were identified among all five groups. Using Receiver Operating Characteristic (ROC) curves based on age, c-myc, Cyclin A, Cyclin B1, Cyclin D1, CDK2, and survivin, we obtained a sensitivity = 81% and specificity = 97% for the classification of cancer vs smokers(no nodules, solid nodules, or GGO) and correctly predicted 31/36 healthy controls as noncancer.

Conclusion

A pattern of autoantibody reactivity to TAAs may distinguish patients with lung cancer versus smokers with normal CTs, stable solid nodules, ground glass opacities, or normal healthy never smokers.