Email updates

Keep up to date with the latest news and content from BMC Nephrology and BioMed Central.

Open Access Highly Accessed Research article

Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla

Keith A Gillis1, Christie McComb1, John E Foster1, Alison HM Taylor1, Rajan K Patel1, Scott TW Morris2, Alan G Jardine1, Markus P Schneider3, Giles H Roditi4, Christian Delles1 and Patrick B Mark1*

Author Affiliations

1 Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, UK

2 Glasgow Renal and Transplant Unit, Western Infirmary, Dumbarton Road, Glasgow, UK

3 Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Erlangen, Germany

4 Department of Radiology, Glasgow Royal Infirmary, Castle Street, Glasgow, UK

For all author emails, please log on.

BMC Nephrology 2014, 15:23  doi:10.1186/1471-2369-15-23

Published: 31 January 2014

Abstract

Background

Measurement of renal perfusion is a crucial part of measuring kidney function. Arterial spin labelling magnetic resonance imaging (ASL MRI) is a non-invasive method of measuring renal perfusion using magnetised blood as endogenous contrast. We studied the reproducibility of ASL MRI in normal volunteers.

Methods

ASL MRI was performed in healthy volunteers on 2 occasions using a 3.0 Tesla MRI scanner with flow-sensitive alternating inversion recovery (FAIR) perfusion preparation with a steady state free precession (True-FISP) pulse sequence. Kidney volume was measured from the scanned images. Routine serum and urine biochemistry were measured prior to MRI scanning.

Results

12 volunteers were recruited yielding 24 kidneys, with a mean participant age of 44.1 ± 14.6 years, blood pressure of 136/82 mmHg and chronic kidney disease epidemiology formula estimated glomerular filtration rate (CKD EPI eGFR) of 98.3 ± 15.1 ml/min/1.73 m2. Mean kidney volumes measured using the ellipsoid formula and voxel count method were 123.5 ± 25.5 cm3, and 156.7 ± 28.9 cm3 respectively. Mean kidney perfusion was 229 ± 41 ml/min/100 g and mean cortical perfusion was 327 ± 63 ml/min/100 g, with no significant differences between ASL MRIs. Mean absolute kidney perfusion calculated from kidney volume measured during the scan was 373 ± 71 ml/min. Bland Altman plots were constructed of the cortical and whole kidney perfusion measurements made at ASL MRIs 1 and 2. These showed good agreement between measurements, with a random distribution of means plotted against differences observed. The intra class correlation for cortical perfusion was 0.85, whilst the within subject coefficient of variance was 9.2%. The intra class correlation for whole kidney perfusion was 0.86, whilst the within subject coefficient of variance was 7.1%.

Conclusions

ASL MRI at 3.0 Tesla provides a repeatable method of measuring renal perfusion in healthy subjects without the need for administration of exogenous compounds. We have established normal values for renal perfusion using ASL MRI in a cohort of healthy volunteers.

Keywords:
Magnetic resonance imaging; Renal blood flow; Renal perfusion; Renal physiology; Arterial spin labelling