Email updates

Keep up to date with the latest news and content from BMC Medical Genetics and BioMed Central.

This article is part of the supplement: The Framingham Heart Study 100,000 single nucleotide polymorphisms resource

Open Access Research

Genome-wide association of sleep and circadian phenotypes

Daniel J Gottlieb123*, George T O'Connor12 and Jemma B Wilk12

Author Affiliations

1 The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA

2 Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA

3 VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, MA 02130, USA

For all author emails, please log on.

BMC Medical Genetics 2007, 8(Suppl 1):S9  doi:10.1186/1471-2350-8-S1-S9

Published: 19 September 2007

Abstract

Background

Numerous studies suggest genetic influences on sleepiness and circadian rhythms. The Sleep Heart Health Study collected questionnaire data on sleep habits and sleepiness from 2848 Framingham Heart Study Offspring Cohort participants. More than 700 participants were genotyped using the Affymetrix 100K SNP GeneChip, providing a unique opportunity to assess genetic linkage and association of these traits.

Methods

Sleepiness (defined as the Epworth Sleepiness Scale score), usual bedtime and usual sleep duration were assessed by self-completion questionnaire. Standardized residual measures adjusted for age, sex and BMI were analyzed. Multipoint variance components linkage analysis was performed. Association of SNPs to sleep phenotypes was analyzed with both population-based and family-based association tests, with analysis limited to 70,987 autosomal SNPs with minor allele frequency ≥10%, call rate ≥80%, and no significant deviation from Hardy-Weinberg equilibrium (p ≥ 0.001).

Results

Heritability of sleepiness was 0.29, bedtime 0.22, and sleep duration 0.17. Both genotype and sleep phenotype data were available for 749 subjects. Linkage analysis revealed five linkage peaks of LOD >2: four to usual bedtime, one to sleep duration. These peaks include several candidate sleep-related genes, including CSNK2A2, encoding a known component of the circadian molecular clock, and PROK2, encoding a putative transmitter of the behavioral circadian rhythm from the suprachiasmatic nucleus. Association tests identified an association of usual bedtime with a non-synonymous coding SNP in NPSR1 that has been shown to encode a gain of function mutation of the neuropeptide S receptor, whose endogenous ligand is a potent promoter of wakefulness. Each copy of the minor allele of this SNP was associated with a 15 minute later mean bedtime. The lowest p value was for association of sleepiness with a SNP located in an intron of PDE4D, which encodes a cAMP-specific phosphodiesterase widely expressed in human brain. Full association results are posted at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007 webcite.

Conclusion

This analysis confirms prior reports of significant heritability of sleepiness, usual bedtime, and usual sleep duration. Several genetic loci with suggestive linkage to these traits are identified, including linkage peaks containing circadian clock-related genes. Association tests identify NPSR1 and PDE4D as possible mediators of bedtime and sleepiness.