Email updates

Keep up to date with the latest news and content from BMC Medical Genetics and BioMed Central.

This article is part of the supplement: The Framingham Heart Study 100,000 single nucleotide polymorphisms resource

Open Access Research

Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham study

Sudha Seshadri12*, Anita L DeStefano13, Rhoda Au12, Joseph M Massaro134, Alexa S Beiser123, Margaret Kelly-Hayes12, Carlos S Kase12, Ralph B D'Agostino14, Charles DeCarli5, Larry D Atwood12 and Philip A Wolf12

Author Affiliations

1 The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA

2 Department of Neurology, Boston University School of Medicine, Boston, MA, USA

3 Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA

4 Statistics and Consulting Unit, Department of Mathematics, Boston University, Boston, MA, USA

5 The Department of Neurology, University of California – Davis, Sacramento, CA, USA

For all author emails, please log on.

BMC Medical Genetics 2007, 8(Suppl 1):S15  doi:10.1186/1471-2350-8-S1-S15

Published: 19 September 2007

Abstract

Background

Brain magnetic resonance imaging (MRI) and cognitive tests can identify heritable endophenotypes associated with an increased risk of developing stroke, dementia and Alzheimer's disease (AD). We conducted a genome-wide association (GWA) and linkage analysis exploring the genetic basis of these endophenotypes in a community-based sample.

Methods

A total of 705 stroke- and dementia-free Framingham participants (age 62 +9 yrs, 50% male) who underwent volumetric brain MRI and cognitive testing (1999–2002) were genotyped. We used linear models adjusting for first degree relationships via generalized estimating equations (GEE) and family based association tests (FBAT) in additive models to relate qualifying single nucleotide polymorphisms (SNPs, 70,987 autosomal on Affymetrix 100K Human Gene Chip with minor allele frequency ≥ 0.10, genotypic call rate ≥ 0.80, and Hardy-Weinberg equilibrium p-value ≥ 0.001) to multivariable-adjusted residuals of 9 MRI measures including total cerebral brain (TCBV), lobar, ventricular and white matter hyperintensity (WMH) volumes, and 6 cognitive factors/tests assessing verbal and visuospatial memory, visual scanning and motor speed, reading, abstract reasoning and naming. We determined multipoint identity-by-descent utilizing 10,592 informative SNPs and 613 short tandem repeats and used variance component analyses to compute LOD scores.

Results

The strongest gene-phenotype association in FBAT analyses was between SORL1 (rs1131497; p = 3.2 × 10-6) and abstract reasoning, and in GEE analyses between CDH4 (rs1970546; p = 3.7 × 10-8) and TCBV. SORL1 plays a role in amyloid precursor protein processing and has been associated with the risk of AD. Among the 50 strongest associations (25 each by GEE and FBAT) were other biologically interesting genes. Polymorphisms within 28 of 163 candidate genes for stroke, AD and memory impairment were associated with the endophenotypes studied at p < 0.001. We confirmed our previously reported linkage of WMH on chromosome 4 and describe linkage of reading performance to a marker on chromosome 18 (GATA11A06), previously linked to dyslexia (LOD scores = 2.2 and 5.1).

Conclusion

Our results suggest that genes associated with clinical neurological disease also have detectable effects on subclinical phenotypes. These hypothesis generating data illustrate the use of an unbiased approach to discover novel pathways that may be involved in brain aging, and could be used to replicate observations made in other studies.