Email updates

Keep up to date with the latest news and content from BMC Medical Imaging and BioMed Central.

Open Access Research article

Skin injury model classification based on shape vector analysis

Emil Röhrich, Michael Thali and Wolf Schweitzer*

Author Affiliations

Institute of Forensic Medicine, University of Zürich, Winterthurerstr. 190/52, 8057 Zürich, Switzerland

For all author emails, please log on.

BMC Medical Imaging 2012, 12:32  doi:10.1186/1471-2342-12-32

Published: 6 November 2012

Abstract

Background: Skin injuries can be crucial in judicial decision making. Forensic experts base their classification on subjective opinions. This study investigates whether known classes of simulated skin injuries are correctly classified statistically based on 3D surface models and derived numerical shape descriptors.

Methods: Skin injury surface characteristics are simulated with plasticine. Six injury classes – abrasions, incised wounds, gunshot entry wounds, smooth and textured strangulation marks as well as patterned injuries - with 18 instances each are used for a k-fold cross validation with six partitions. Deformed plasticine models are captured with a 3D surface scanner. Mean curvature is estimated for each polygon surface vertex. Subsequently, distance distributions and derived aspect ratios, convex hulls, concentric spheres, hyperbolic points and Fourier transforms are used to generate 1284-dimensional shape vectors. Subsequent descriptor reduction maximizing SNR (signal-to-noise ratio) result in an average of 41 descriptors (varying across k-folds). With non-normal multivariate distribution of heteroskedastic data, requirements for LDA (linear discriminant analysis) are not met. Thus, shrinkage parameters of RDA (regularized discriminant analysis) are optimized yielding a best performance with λ = 0.99 and γ = 0.001.

Results: Receiver Operating Characteristic of a descriptive RDA yields an ideal Area Under the Curve of 1.0for all six categories. Predictive RDA results in an average CRR (correct recognition rate) of 97,22% under a 6 partition k-fold. Adding uniform noise within the range of one standard deviation degrades the average CRR to 71,3%.

Conclusions: Digitized 3D surface shape data can be used to automatically classify idealized shape models of simulated skin injuries. Deriving some well established descriptors such as histograms, saddle shape of hyperbolic points or convex hulls with subsequent reduction of dimensionality while maximizing SNR seem to work well for the data at hand, as predictive RDA results in CRR of 97,22%. Objective basis for discrimination of non-overlapping hypotheses or categories are a major issue in medicolegal skin injury analysis and that is where this method appears to be strong. Technical surface quality is important in that adding noise clearly degrades CRR.

Trial registration: This study does not cover the results of a controlled health care intervention as only plasticine was used. Thus, there was no trial registration.