Email updates

Keep up to date with the latest news and content from BMC Infectious Diseases and BioMed Central.

Open Access Highly Accessed Research article

Modeling the impact of novel diagnostic tests on pediatric and extrapulmonary tuberculosis

Claudia M Denkinger123*, Beate Kampmann4, Syed Ahmed2 and David W Dowdy5

Author Affiliations

1 Beth Israel Deaconess Medical Center, Boston, USA

2 McGill University, Montreal, Canada

3 Foundation for Innovative New Diagnostics, Geneva, Switzerland

4 Imperial College, London, UK

5 Johns Hopkins Bloomberg School of Public Health, Baltimore, USA

For all author emails, please log on.

BMC Infectious Diseases 2014, 14:477  doi:10.1186/1471-2334-14-477

Published: 3 September 2014

Abstract

Background

Extrapulmonary tuberculosis (EPTB) and most pediatric TB cannot be diagnosed using sputum-based assays. The epidemiological impact of different strategies to diagnose EPTB and pediatric TB is unclear.

Methods

We developed a dynamic epidemic model of TB in a hypothetical population with epidemiological characteristics similar to India. We evaluated the impact of four alternative diagnostic test platforms on adult EPTB and pediatric TB mortality over 10 years: (1) Nucleic acid amplification test optimized for diagnosis of EPTB (“NAAT-EPTB”); (2) NAAT optimized for pediatric TB (“NAAT-Peds”); (3) more deployable NAAT for sputum-based diagnosis of adult pulmonary TB (“point-of-care (POC) sputum NAAT”); and (4) more deployable NAAT capable of diagnosing all forms of TB using non-invasive, non-sputum specimens (“POC non-sputum NAAT”).

Results

NAAT-EPTB lowered adult EPTB mortality by a projected 7.6% (95% uncertainty range [UR]: 6.5-8.8%). NAAT-Peds lowered pediatric TB mortality by 6.8% (UR: 4.9-8.4%). POC sputum NAAT, though only able to diagnose pulmonary TB, reduced projected pediatric TB deaths by 13.3% (UR: 4.6-15.7%) and adult EPTB deaths by 8.4% (UR 2.0-9.3%) simply by averting transmission of disease. POC non-sputum NAAT had the greatest effect, lowering pediatric TB mortality by 34.7% (UR: 26.8-38.7), and adult EPTB mortality by 38.5% (UR: 30.7-41.2). The relative impact of a POC sputum NAAT (i.e., enhanced deployability) versus NAAT-EPTB (i.e., enhanced ability to specifically diagnose TB-NSP) on adult EPTB mortality depends most strongly on factors that influence transmission, with settings of higher transmission (e.g., higher per-person transmission rate, lower diagnostic rate) favoring POC sputum NAAT.

Conclusion

Although novel tests for pediatric TB and EPTB are likely to reduce TB mortality, major reductions in pediatric and EPTB incidence and mortality also require better diagnostic tests for adult pulmonary TB that reach a larger population.

Keywords:
Tuberculosis; Diagnostics; Pediatrics; Extrapulmonary; Modeling