Open Access Research article

Russian gonococcal antimicrobial susceptibility programme (RU-GASP) – resistance in Neisseria gonorrhoeae during 2009–2012 and NG-MAST genotypes in 2011 and 2012

Anna Kubanova1, Alexey Kubanov1, Nataliya Frigo1, Viktoria Solomka1, Vera Semina1, Denis Vorobyev1, Rafil Khairullin1 and Magnus Unemo2*

Author Affiliations

1 Тhe State Research Center of Dermatology, Venereology and Сosmetology of The Russian Ministry of Health (SRCDVC), Moscow, Russia

2 WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, SE-701 85 Örebro, Sweden

For all author emails, please log on.

BMC Infectious Diseases 2014, 14:342  doi:10.1186/1471-2334-14-342

Published: 19 June 2014



Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a major concern worldwide and gonococcal AMR surveillance globally is imperative for public health purposes. In Eastern Europe, gonococcal AMR surveillance is exceedingly rare. However, in 2004 the Russian gonococcal antimicrobial susceptibility programme (RU-GASP) was initiated. The aims of this study were to describe the prevalence and trends of gonococcal AMR from 2009 to 2012, and molecular epidemiological genotypes in 2011 and 2012 in Russia.


Gonococcal isolates from 12–46 surveillance sites distributed across Russia, obtained in 2009 (n = 1200), 2010 (n = 407), 2011 (n = 423), and 2012 (n = 106), were examined for antimicrobial susceptibility using agar dilution method. Gonococcal isolates from 2011 and 2012 were investigated with N. gonorrhoeae multi-antigen sequence typing (NG-MAST).


During 2009–2012, the proportions of gonococcal isolates resistant to ciprofloxacin, penicillin G, azithromycin and spectinomycin ranged from 25.5% to 44.4%, 9.6% to 13.2%, 2.3% to 17.0% and 0.9% to 11.6%, respectively. Overall, the resistance level to penicillin G was stable, the resistance level to ciprofloxacin was decreasing, however, the level of resistance to azithromycin increased. All isolates were susceptible to ceftriaxone using the US CLSI breakpoints. However, using the European breakpoints 58 (2.7%) of the isolates were resistant to ceftriaxone. Interestingly, this proportion was decreasing, i.e. from 4.8% in 2009 to 0% in 2012.


In Russia, the diversified gonococcal population showed a high resistance to ciprofloxacin, penicillin G and azithromycin. In general, the MICs of ceftriaxone were relatively high, however, they were decreasing from 2009 to 2012. Ceftriaxone should be the first-line for empiric antimicrobial monotherapy of gonorrhoea in Russia. It is essential to further strengthen the surveillance of gonococcal AMR (ideally also gonorrhoea treatment failures) in Russia.

Neisseria gonorrhoeae; Gonorrhoea; Antimicrobial resistance; National surveillance; Russian gonococcal antimicrobial susceptibility programme (RU-GASP); Extended-spectrum cephalosporins (ESCs); Ceftriaxone; Treatment; N. gonorrhoeae multiantigen sequence typing (NG-MAST); Russia