Email updates

Keep up to date with the latest news and content from BMC Infectious Diseases and BioMed Central.

Open Access Highly Accessed Research article

Agricultural, socioeconomic and environmental variables as risks for human verotoxigenic Escherichia coli (VTEC) infection in Finland

Katri Jalava*, Jukka Ollgren, Marjut Eklund, Anja Siitonen and Markku Kuusi

Author Affiliations

Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland

For all author emails, please log on.

BMC Infectious Diseases 2011, 11:275  doi:10.1186/1471-2334-11-275

Published: 18 October 2011

Abstract

Background

Verotoxigenic E. coli (VTEC) is the cause of severe gastrointestinal infection especially among infants. Between 10 and 20 cases are reported annually to the National Infectious Disease Register (NIDR) in Finland. The aim of this study was to identify explanatory variables for VTEC infections reported to the NIDR in Finland between 1997 and 2006. We applied a hurdle model, applicable for a dataset with an excess of zeros.

Methods

We enrolled 131 domestically acquired primary cases of VTEC between 1997 and 2006 from routine surveillance data. The isolated strains were characterized by virulence type, serogroup, phage type and pulsed-field gel electrophoresis. By applying a two-part Bayesian hurdle model to infectious disease surveillance data, we were able to create a model in which the covariates were associated with the probability for occurrence of the cases in the logistic regression part and the magnitude of covariate changes in the Poisson regression part if cases do occur. The model also included spatial correlations between neighbouring municipalities.

Results

The average annual incidence rate was 4.8 cases per million inhabitants based on the cases as reported to the NIDR. Of the 131 cases, 74 VTEC O157 and 58 non-O157 strains were isolated (one person had dual infections). The number of bulls per human population and the proportion of the population with a higher education were associated with an increased occurrence and incidence of human VTEC infections in 70 (17%) of 416 of Finnish municipalities. In addition, the proportion of fresh water per area, the proportion of cultivated land per area and the proportion of low income households with children were associated with increased incidence of VTEC infections.

Conclusions

With hurdle models we were able to distinguish between risk factors for the occurrence of the disease and the incidence of the disease for data characterised by an excess of zeros. The density of bulls and the proportion of the population with higher education were significant both for occurrence and incidence, while the proportion of fresh water, cultivated land, and the proportion of low income households with children were significant for the incidence of the disease.