Email updates

Keep up to date with the latest news and content from BMC Medical Research Methodology and BioMed Central.

Open Access Correspondence

Assessing the impact of biomedical research in academic institutions of disparate sizes

Vana Sypsa and Angelos Hatzakis*

Author affiliations

Department of Hygiene and Epidemiology, Athens University Medical School, Athens, Greece

For all author emails, please log on.

Citation and License

BMC Medical Research Methodology 2009, 9:33  doi:10.1186/1471-2288-9-33

Published: 29 May 2009

Abstract

Background

The evaluation of academic research performance is nowadays a priority issue. Bibliometric indicators such as the number of publications, total citation counts and h-index are an indispensable tool in this task but their inherent association with the size of the research output may result in rewarding high production when evaluating institutions of disparate sizes. The aim of this study is to propose an indicator that may facilitate the comparison of institutions of disparate sizes.

Methods

The Modified Impact Index (MII) was defined as the ratio of the observed h-index (h) of an institution over the h-index anticipated for that institution on average, given the number of publications (N) it produces i.e. (α and β denote the intercept and the slope, respectively, of the line describing the dependence of the h-index on the number of publications in log10 scale). MII values higher than 1 indicate that an institution performs better than the average, in terms of its h-index. Data on scientific papers published during 2002–2006 and within 36 medical fields for 219 Academic Medical Institutions from 16 European countries were used to estimate α and β and to calculate the MII of their total and field-specific production.

Results

From our biomedical research data, the slope β governing the dependence of h-index on the number of publications in biomedical research was found to be similar to that estimated in other disciplines (≈0.4). The MII was positively associated with the average number of citations/publication (r = 0.653, p < 0.001), the h-index (r = 0.213, p = 0.002), the number of publications with ≥ 100 citations (r = 0.211, p = 0.004) but not with the number of publications (r = -0.020, p = 0.765). It was the most highly associated indicator with the share of country-specific government budget appropriations or outlays for research and development as % of GDP in 2004 (r = 0.229) followed by the average number of citations/publication (r = 0.153) whereas the corresponding correlation coefficient for the h-index was close to 0 (r = 0.029). MII was calculated for first 10 top-ranked European universities in life sciences and biomedicine, as provided by Times Higher Education ranking system, and their total and field-specific performance was compared.

Conclusion

The MII should complement the use of h-index when comparing the research output of institutions of disparate sizes. It has a conceptual interpretation and, with the data provided here, can be computed for the total research output as well as for field-specific publication sets of institutions in biomedicine.