Email updates

Keep up to date with the latest news and content from BMC Medical Research Methodology and BioMed Central.

Open Access Highly Accessed Review

From concepts, theory, and evidence of heterogeneity of treatment effects to methodological approaches: a primer

Richard J Willke1*, Zhiyuan Zheng2, Prasun Subedi1, Rikard Althin3 and C Daniel Mullins2

Author Affiliations

1 Pfizer, Inc, 235 E. 42nd Street, New York, NY 10017, USA

2 University of Maryland School of Pharmacy, 220 Arch Street, 12th Floor, Baltimore, MD, 21201, USA

3 Pfizer, Inc, 500 Arcola Road, Collegeville, PA, 19426-3982, USA

For all author emails, please log on.

BMC Medical Research Methodology 2012, 12:185  doi:10.1186/1471-2288-12-185

Published: 13 December 2012

Abstract

Implicit in the growing interest in patient-centered outcomes research is a growing need for better evidence regarding how responses to a given intervention or treatment may vary across patients, referred to as heterogeneity of treatment effect (HTE). A variety of methods are available for exploring HTE, each associated with unique strengths and limitations. This paper reviews a selected set of methodological approaches to understanding HTE, focusing largely but not exclusively on their uses with randomized trial data. It is oriented for the “intermediate” outcomes researcher, who may already be familiar with some methods, but would value a systematic overview of both more and less familiar methods with attention to when and why they may be used. Drawing from the biomedical, statistical, epidemiological and econometrics literature, we describe the steps involved in choosing an HTE approach, focusing on whether the intent of the analysis is for exploratory, initial testing, or confirmatory testing purposes. We also map HTE methodological approaches to data considerations as well as the strengths and limitations of each approach. Methods reviewed include formal subgroup analysis, meta-analysis and meta-regression, various types of predictive risk modeling including classification and regression tree analysis, series of n-of-1 trials, latent growth and growth mixture models, quantile regression, and selected non-parametric methods. In addition to an overview of each HTE method, examples and references are provided for further reading.

By guiding the selection of the methods and analysis, this review is meant to better enable outcomes researchers to understand and explore aspects of HTE in the context of patient-centered outcomes research.

Keywords:
Heterogeneity; Risk adjustment; Estimation techniques; Comparative effectiveness research