Email updates

Keep up to date with the latest news and content from BMC Medical Research Methodology and BioMed Central.

Open Access Research article

Calculating unreported confidence intervals for paired data

Karim F Hirji1 and Morten W Fagerland2*

Author Affiliations

1 Department of Epidemiology and Biostatistics, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania

2 Unit of Biostatistics and Epidemiology, Oslo University Hospital, N-0407 Oslo, Norway

For all author emails, please log on.

BMC Medical Research Methodology 2011, 11:66  doi:10.1186/1471-2288-11-66

Published: 12 May 2011

Abstract

Background

Confidence intervals (or associated standard errors) facilitate assessment of the practical importance of the findings of a health study, and their incorporation into a meta-analysis. For paired design studies, these items are often not reported. Since the descriptive statistics for such studies are usually presented in the same way as for unpaired designs, direct computation of the standard error is not possible without additional information.

Methods

Elementary, well-known relationships between standard errors and p-values were used to develop computation schemes for paired mean difference, risk difference, risk ratio and odds ratio.

Results

Unreported confidence intervals for large sample paired binary and numeric data can be computed fairly accurately using simple methods provided the p-value is given. In the case of paired binary data, the design based 2 × 2 table can be reconstructed as well.

Conclusions

Our results will facilitate appropriate interpretation of paired design studies, and their incorporation into meta-analyses.