Email updates

Keep up to date with the latest news and content from BMC Plant Biology and BioMed Central.

Open Access Research article

The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences

Hongyu Gao and Madan K Bhattacharyya*

Author Affiliations

Department of Agronomy, Interdepartmental Genetics, Iowa State University, Ames, Iowa 50011, USA

For all author emails, please log on.

BMC Plant Biology 2008, 8:29  doi:10.1186/1471-2229-8-29

Published: 19 March 2008

Abstract

Background

A series of Rps (

    r
esistance to
    P
ytophthora
    s
ojae
) genes have been protecting soybean from the root and stem rot disease caused by the Oomycete pathogen, Phytophthora sojae. Five Rps genes were mapped to the Rps1 locus located near the 28 cM map position on molecular linkage group N of the composite genetic soybean map. Among these five genes, Rps1-k was introgressed from the cultivar, Kingwa. Rps1-k has been providing stable and broad-spectrum Phytophthora resistance in the major soybean-producing regions of the United States. Rps1-k has been mapped and isolated. More than one functional Rps1-k gene was identified from the Rps1-k locus. The clustering feature at the Rps1-k locus might have facilitated the expansion of Rps1-k gene numbers and the generation of new recognition specificities. The Rps1-k region was sequenced to understand the possible evolutionary steps that shaped the generation of Phytophthora resistance genes in soybean.

Results

Here the analyses of sequences of three overlapping BAC clones containing the 184,111 bp Rps1-k region are reported. A shotgun sequencing strategy was applied in sequencing the BAC contig. Sequence analysis predicted a few full-length genes including two Rps1-k genes, Rps1-k-1 and Rps1-k-2. Previously reported Rps1-k-3 from this genomic region [1] was evolved through intramolecular recombination between Rps1-k-1 and Rps1-k-2 in Escherichia coli. The majority of the predicted genes are truncated and therefore most likely they are nonfunctional. A member of a highly abundant retroelement, SIRE1, was identified from the Rps1-k region. The Rps1-k region is primarily composed of repetitive sequences. Sixteen simple repeat and 63 tandem repeat sequences were identified from the locus.

Conclusion

These data indicate that the Rps1 locus is located in a gene-poor region. The abundance of repetitive sequences in the Rps1-k region suggested that the location of this locus is in or near a heterochromatic region. Poor recombination frequencies combined with presence of two functional Rps genes at this locus has been providing stable Phytophthora resistance in soybean.