Email updates

Keep up to date with the latest news and content from BMC Plant Biology and BioMed Central.

Open Access Research article

Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination

Huan Xia13, Marna Yandeau-Nelson24, Donald B Thompson3 and Mark J Guiltinan4*

Author Affiliations

1 MARS Petcare US, 315 Cool Springs Boulevard, Franklin, Tennessee 37067, USA

2 Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011-3260, USA

3 Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802-2504, USA

4 Department of Horticulture, The Pennsylvania State University, University Park, Pennsylvania 16802-5807, USA

For all author emails, please log on.

BMC Plant Biology 2011, 11:95  doi:10.1186/1471-2229-11-95

Published: 21 May 2011

Abstract

Background

Two distinct starch branching enzyme (SBE) isoforms predate the divergence of monocots and dicots and have been conserved in plants since then. This strongly suggests that both SBEI and SBEII provide unique selective advantages to plants. However, no phenotype for the SBEI mutation, sbe1a, had been previously observed. To explore this incongruity the objective of the present work was to characterize functional and molecular phenotypes of both sbe1a and wild-type (Wt) in the W64A maize inbred line.

Results

Endosperm starch granules from the sbe1a mutant were more resistant to digestion by pancreatic α-amylase, and the sbe1a mutant starch had an altered branching pattern for amylopectin and amylose. When kernels were germinated, the sbe1a mutant was associated with shorter coleoptile length and higher residual starch content, suggesting that less efficient starch utilization may have impaired growth during germination.

Conclusions

The present report documents for the first time a molecular phenotype due to the absence of SBEI, and suggests strongly that it is associated with altered physiological function of the starch in vivo. We believe that these results provide a plausible rationale for the conservation of SBEI in plants in both monocots and dicots, as greater seedling vigor would provide an important survival advantage when resources are limited.