Email updates

Keep up to date with the latest news and content from BMC Neuroscience and BioMed Central.

This article is part of the supplement: Abstracts from the Twenty Second Annual Computational Neuroscience Meeting: CNS*2013

Open Access Poster presentation

Visually guided behavior in freely moving mice

Balaji Sriram1*, Alberto Cruz-Martin1, Laura DeNardo12, Mohit Patel1, Euiseok J Kim3 and Anirvan Ghosh14

Author Affiliations

1 Division of Biology, University of California, San Diego, La Jolla, USA

2 Department of Biology, Stanford University, Stanford, USA

3 SNL-C, Salk Institute for Biological Sciences, La Jolla, USA

4 CNS Discovery, F. Hoffmann La Roche, Basel, Switzerland

For all author emails, please log on.

BMC Neuroscience 2013, 14(Suppl 1):P141  doi:10.1186/1471-2202-14-S1-P141

The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2202/14/S1/P141


Published:8 July 2013

© 2013 Sriram et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Poster presentation

The ability of neuroscience to ascribe functions to brain regions and to different neuronal subtypes within these regions depends on our ability to identify behavioral paradigms that depend on these functions and to measure these behaviors in a quantitative fashion. Due to their inexpensive nature, extensive similarities in brain architecture, availability of genetic tools and ease of handling, rodents have recently become an important tool in the study of neuronal coding. We train common mice (Mus musculus) in a potentially cortex dependent, visually guided task.

Adult C57BL/6 mice were trained to perform an orientation discrimination task in a 2AFC (2 alternate forced choice) behavioral training chamber. Subjects performed trials in a semi-closed economy obtaining water through the training chamber 5-6 days a week with ad-libitum water provided for the remaining 1-2 days. During the initial training stage, stimuli were full field drifting gratings (100% contrast, ~0.05 cpd, 2 Hz) with randomly interleaved trials showing gratings oriented ±45° from the vertical. Mice performed on average ~200 trials every day. Subjects learned the task until they reached a criterion performance (80-85% correct) (Figure 1A).

thumbnailFigure 1. Example psychometric curves from a typical subject. (A) Initial training with full contrast, 0.05cpd, 2Hz gratings. After the initial training period, performance was measured with varying spatial frequency (B), contrast (C), temporal frequency (D) and orientation of grating (E). All data show binomial fits to the data with 95% confidence intervals. In B,C,D and E the condition corresponding to the original training is denoted by.'*'

Past this initial training stage, subjects were tested on a variety of stimuli where the discriminated gratings showed varying spatial frequency (Figure 1B), contrast (Figure 1C), temporal frequency (Figure 1D) and orientation (Figure 1E) from the vertical allowing us to measure precise psychometric curves on the performance of subjects.

The role of cortical (Primary visual cortex; V1) and subcortical circuits (Superior colliculus; SC) mediating this behavior will be probed through the use of lesions. We hope that such measurements will provide a basis to constrain and in the future uniquely describe models of the neocortex.