Email updates

Keep up to date with the latest news and content from BMC Neuroscience and BioMed Central.

Open Access Highly Accessed Research article

Dopaminergic tone regulates transient potassium current maximal conductance through a translational mechanism requiring D1Rs, cAMP/PKA, Erk and mTOR

Edmund W Rodgers1, Wulf-Dieter Krenz1, Xiaoyue Jiang3, Lingjun Li3 and Deborah J Baro12*

Author Affiliations

1 Department of Biology, Georgia State University, Atlanta 30303, Georgia

2 Neuroscience Institute, Georgia State University, Atlanta 30303, Georgia

3 School of Pharmacy and Department of Chemistry, University of Wisconsin, Madison, WI 53705-2222, USA

For all author emails, please log on.

BMC Neuroscience 2013, 14:143  doi:10.1186/1471-2202-14-143

Published: 13 November 2013

Abstract

Background

Dopamine (DA) can produce divergent effects at different time scales. DA has opposing immediate and long-term effects on the transient potassium current (IA) within neurons of the pyloric network, in the Panulirus interruptus stomatogastric ganglion. The lateral pyloric neuron (LP) expresses type 1 DA receptors (D1Rs). A 10 min application of 5-100 μM DA decreases LP IA by producing a decrease in IA maximal conductance (Gmax) and a depolarizing shift in IA voltage dependence through a cAMP-Protein kinase A (PKA) dependent mechanism. Alternatively, a 1 hr application of DA (≥5 nM) generates a persistent (measured 4 hr after DA washout) increase in IA Gmax in the same neuron, through a mechanistic target of rapamycin (mTOR) dependent translational mechanism. We examined the dose, time and protein dependencies of the persistent DA effect.

Results

We found that disrupting normal modulatory tone decreased LP IA. Addition of 500 pM-5 nM DA to the saline for 1 hr prevented this decrease, and in the case of a 5 nM DA application, the effect was sustained for >4 hrs after DA removal. To determine if increased cAMP mediated the persistent effect of 5nM DA, we applied the cAMP analog, 8-bromo-cAMP alone or with rapamycin for 1 hr, followed by wash and TEVC. 8-bromo-cAMP induced an increase in IA Gmax, which was blocked by rapamycin. Next we tested the roles of PKA and guanine exchange factor protein activated by cAMP (ePACs) in the DA-induced persistent change in IA using the PKA specific antagonist Rp-cAMP and the ePAC specific agonist 8-pCPT-2′-O-Me-cAMP. The PKA antagonist blocked the DA induced increases in LP IA Gmax, whereas the ePAC agonist did not induce an increase in LP IA Gmax. Finally we tested whether extracellular signal regulated kinase (Erk) activity was necessary for the persistent effect by co-application of Erk antagonists PD98059 or U0126 with DA. Erk antagonism blocked the DA induced persistent increase in LP IA.

Conclusions

These data suggest that dopaminergic tone regulates ion channel density in a concentration and time dependent manner. The D1R- PKA axis, along with Erk and mTOR are necessary for the persistent increase in LP IA induced by high affinity D1Rs.