Email updates

Keep up to date with the latest news and content from BMC Neuroscience and BioMed Central.

This article is part of the supplement: Nineteenth Annual Computational Neuroscience Meeting: CNS*2010

Open Access Open Badges Oral presentation

Decorrelation of low-frequency neural activity by inhibitory feedback

Tom Tetzlaff1*, Moritz Helias2, Gaute T Einevoll1 and Markus Diesmann23

Author Affiliations

1 Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway

2 RIKEN Brain Science Institute, Wako City, Japan

3 Brain and Neural Systems Team, RIKEN Computational Science Research Program, Wako City, Japan

For all author emails, please log on.

BMC Neuroscience 2010, 11(Suppl 1):O11  doi:10.1186/1471-2202-11-S1-O11

The electronic version of this article is the complete one and can be found online at:

Published:20 July 2010

© 2010 Tetzlaff et al; licensee BioMed Central Ltd.

Oral presentation

To correctly judge the functional role of cooperative neural activity it is essential to understand how neural correlations are determined by the structure and dynamics of neural networks. Shared presynaptic input is one of the major sources of correlated synaptic activity in such systems. In the asynchronous state of recurrent neural network models, however, spike correlations are considerably smaller than what one would expect based on the amount of shared presynaptic sources [1,2]. A similar lack of correlations in the spiking activity of neighbouring cortical neurons has been observed experimentally [3]. Recently, it has been pointed out that shared-input correlations can be actively suppressed by the dynamics of recurrent networks [4]. Here, we show that both in networks with purely inhibitory coupling (Fig. 1A) and in those with mixed excitatory-inhibitory coupling (Fig. 1B) this active decorrelation affects mainly the activity at low frequencies (<20 Hz). High-frequency activity, in contrast, is rather unaffected. Simulations rule out that this phenomenon is the result of refractoriness. By means of a simple linear population-rate model we demonstrate that the effect is essentially explained by inhibitory feedback.

thumbnailFigure 1. Population-rate power spectra for an inhibitory (A) and a balanced recurrent network (B) of leaky integrate-and-fire model neurons (black curves). Grey curves represent population-rate spectra of ensembles of unconnected neurons receiving stationary Poisson input spike trains with the same shared-input structure as in the respective recurrent cases (black curves).


Supported by the Research Council of Norway (eVITA, Notur), the Helmholtz Alliance on Systems Biology, the Next-Generation Supercomputer Project of MEXT, EU Grant 15879 (FACETS), DIP F1.2, and BMBF Grant 01GQ0420 to BCCN Freiburg. All network simulations were carried out using NEST (


  1. Tetzlaff T, Rotter S, Stark E, Abeles M, Aertsen A, Diesmann M: Dependence of neuronal correlations on filter characteristics and marginal spike-train statistics.

    Neural Comput 2008, 20(9):2133-2184. PubMed Abstract | Publisher Full Text OpenURL

  2. Kriener B, Tetzlaff T, Aertsen A, Diesmann M, Rotter S: Correlations and population dynamics in cortical networks.

    Neural Comput 2008, 20(9):2185-2226. PubMed Abstract | Publisher Full Text OpenURL

  3. Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS: Decorrelated Neuronal Firing in Cortical Microcircuits.

    Science 2010, 327(5965):584-587. PubMed Abstract | Publisher Full Text OpenURL

  4. Renart A, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, Harris KD: The Asynchronous State in Cortical Circuits.

    Science 2010, 327(5965):587-590. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL