Email updates

Keep up to date with the latest news and content from BMC Neuroscience and BioMed Central.

This article is part of the supplement: Eighteenth Annual Computational Neuroscience Meeting: CNS*2009

Open Access Poster presentation

Frequency response functions for cortical microcircuits

Philip Ulinski

Author Affiliations

Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA

BMC Neuroscience 2009, 10(Suppl 1):P305  doi:10.1186/1471-2202-10-S1-P305

The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2202/10/S1/P305


Published:13 July 2009

© 2009 Ulinski; licensee BioMed Central Ltd.

Poster presentation

Neurons in the cerebral cortex form interactions that can be described as a network of feedforward and feedback, excitatory and inhibitory loops. It is, consequently, natural to represent cortical microcircuits as a control system (e.g. [1]) with thalamic inputs and outputs to other brain regions. For example, the visual cortex in freshwater turtles contains pyramidal cells that receive inputs from the lateral geniculate nucleus and project to other cortical areas, the geniculate and structures in the brainstem [2]. The cortex also contains at least three populations of inhibitory interneurons called subpial cells, stellate cells and horizontal cells [3]. The subpial cells form a feedforward inhibitory loop while the horizontal cells form a feedback inhibitory loop. We have recently [4] used a large-scale model of turtle visual cortex to characterize this cortex as a control system. However, this model is too large and complex to allow analysis with methods from control and systems theory. We have taken an approach to characterizing the dynamics of cortical microcircuits by developing a dynamical systems model that consists of a family of linear non-autonomous ordinary differential equations. The activity of the ith population of neurons, xi, is given by the equation

where the summation is over all of the N populations of neurons. The time-dependent coefficients give the time course of synaptic interactions of all neurons in the ith population by all of the neurons in the jth population. The coefficients were determined by fitting the solutions of the above equation to the results of simulations using the large-scale model. In this study, we characterized the responses of the system to sinusoidal inputs of varying frequencies. The responses of the system consisted of a transient response and a steady-state sinusoidal response. The transient response consisted of two activity peaks that corresponded to the primary and secondary propagating waves seen in this cortex. The amplitudes of both peaks varied as a function of stimulus input and showed a resonant peak at 20 Hz. Individual neurons can show both low and high frequency resonance peaks [5,6] due to the passive properties of the neuronal membranes and active properties of voltage gated ion channels. This work suggests that cortical networks can have resonant properties that differ from those of their constituent neurons.

Acknowledgements

This work was supported by a grant from the CRCNS program at the NSF.

References

  1. Douglas RJ, Martin KAC: A functional microcircuit for cat visual cortex.

    J Physiol 1991, 440:735-769. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL

  2. Colombe JB, Ulinski PS: Temporal dispersion windows in cortical neurons.

    J Comput Neurosci 1999, 7:71-87. PubMed Abstract | Publisher Full Text OpenURL

  3. Colombe JB, Sylvester J, Block J, Ulinski PS: Subpial and stellate cells: Two populations of interneurons in turtle visual cortex.

    J Comp Neurol 2004, 471:333-351. PubMed Abstract | Publisher Full Text OpenURL

  4. Wang W, Campaigne C, Ghosh BK, Ulinski PS: Two cortical circuits control propagating waves in visual cortex.

    J Comput Neurosci 2005, 5:561-593. OpenURL

  5. Boucsein C, Tetzlaff T, Meier R, Aertsen A, Naundorf B: Dynamical response properties of neocortical neuron ensembles: Multiplicative and additive noise.

    J Neurosci 2009, 29:1006-1010. PubMed Abstract | Publisher Full Text OpenURL

  6. Higgs MH, Spain WJ: Conditional bursting enhances resonant firing in neocortical layer 2–3 pyramidal neurons.

    J Neurosci 2009, 29:1285-1299. PubMed Abstract | Publisher Full Text OpenURL