Email updates

Keep up to date with the latest news and content from BMC Molecular Biology and BioMed Central.

Open Access Highly Accessed Research article

Novel in vivo targets of ΔNp63 in keratinocytes identified by a modified chromatin immunoprecipitation approach

Barbara Birkaya, Kori Ortt and Satrajit Sinha*

Author Affiliations

Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA

For all author emails, please log on.

BMC Molecular Biology 2007, 8:43  doi:10.1186/1471-2199-8-43

Published: 23 May 2007



p63 is a transcription factor that plays an important role in skin epidermal development and differentiation. The p63 gene encodes for two major protein isoforms, those containing an amino-terminal trans-activation domain (TAp63) and those lacking this domain (ΔNp63). Both the TA and ΔN transcripts are also alternatively spliced at the 3' end producing proteins with unique C-termini that are designated as α, β and γ isoforms. Recent research has suggested that ΔNp63 is the predominant isoform expressed and active in keratinocytes.


To better elucidate the biological role of p63 in regulating gene expression in keratinocytes we performed chromatin immunoprecipitation (ChIP) experiments with ΔNp63-specific antibodies. We included an additional step in the ChIP procedure to enrich for ΔNp63 targets by screening the library of immunoprecipitated DNA for its ability to bind recombinant GST-ΔNp63. Cloning of ΔNp63-ChIP-derived DNA fragments identified more than 60 potential ΔNp63 target loci that were located close to or embedded within known or predicted genes. Identity of these target genes suggests that they may participate in a myriad of cellular processes including transcriptional regulation, signaling and metabolism. Here we confirm the binding of ΔNp63 to several of these genomic loci both by EMSA and replicate ChIP assays. Finally we show that the expression of many of these target genes is altered when ΔNp63 levels in keratinocytes are reduced by siRNA, further confirming that these are bona fide targets.


This unbiased genomic approach has allowed us to uncover functional targets of ΔNp63 and serves as the initial step in further analysis of the transcriptional regulatory mechanisms that are governed by p63 in keratinocytes.