Email updates

Keep up to date with the latest news and content from BMC Molecular Biology and BioMed Central.

Open Access Highly Accessed Research article

Stripped-down DNA repair in a highly reduced parasite

Erin E Gill* and Naomi M Fast

Author Affiliations

Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada

For all author emails, please log on.

BMC Molecular Biology 2007, 8:24  doi:10.1186/1471-2199-8-24

Published: 20 March 2007

Abstract

Background

Encephalitozoon cuniculi is a member of a distinctive group of single-celled parasitic eukaryotes called microsporidia, which are closely related to fungi. Some of these organisms, including E. cuniculi, also have uniquely small genomes that are within the prokaryotic range. Thus, E. cuniculi has undergone a massive genome reduction which has resulted in a loss of genes from diverse biological pathways, including those that act in DNA repair.

DNA repair is essential to any living cell. A loss of these mechanisms invariably results in accumulation of mutations and/or cell death. Six major pathways of DNA repair in eukaryotes include: non-homologous end joining (NHEJ), homologous recombination repair (HRR), mismatch repair (MMR), nucleotide excision repair (NER), base excision repair (BER) and methyltransferase repair. DNA polymerases are also critical players in DNA repair processes.

Given the close relationship between microsporidia and fungi, the repair mechanisms present in E. cuniculi were compared to those of the yeast Saccharomyces cerevisiae to ascertain how the process of genome reduction has affected the DNA repair pathways.

Results

E. cuniculi lacks 16 (plus another 6 potential absences) of the 56 DNA repair genes sought via BLASTP and PSI-BLAST searches. Six of 14 DNA polymerases or polymerase subunits are also absent in E. cuniculi. All of these genes are relatively well conserved within eukaryotes. The absence of genes is not distributed equally among the different repair pathways; some pathways lack only one protein, while there is a striking absence of many proteins that are components of both double strand break repair pathways. All specialized repair polymerases are also absent.

Conclusion

Given the large number of DNA repair genes that are absent from the double strand break repair pathways, E. cuniculi is a prime candidate for the study of double strand break repair with minimal machinery. Strikingly, all of the double strand break repair genes that have been retained by E. cuniculi participate in other biological pathways.