Email updates

Keep up to date with the latest news and content from BMC Molecular Biology and BioMed Central.

Open Access Research article

Regulation of heme oxygenase-1 mRNA deadenylation and turnover in NIH3T3 cells by nitrosative or alkylation stress

Veronica Leautaud12 and Bruce Demple1*

Author Affiliations

1 Department of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA

2 Rice University, Department of Bioengineering MS-142, 6100 Main St, Houston, TX 77005, USA

For all author emails, please log on.

BMC Molecular Biology 2007, 8:116  doi:10.1186/1471-2199-8-116

Published: 20 December 2007



Heme oxygenase-1 (HO-1) catalizes heme degradation, and is considered one of the most sensitive indicators of cellular stress. Previous work in human fibroblasts has shown that HO-1 expression is induced by NO, and that transcriptional induction is only partially responsible; instead, the HO-1 mRNA half-life is substantially increased in response to NO. The mechanism of this stabilization remains unknown.


In NIH3T3 murine fibroblasts, NO exposure increased the half-life of the HO-1 transcript from ~1.6 h to 11 h, while treatments with CdCl2, NaAsO2 or H2O2 increased the half-life only up to 5 h. Although poly(A) tail shortening can be rate-limiting in mRNA degradation, the HO-1 mRNA deadenylation rate in NO-treated cells was ~65% of that in untreated controls. In untreated cells, HO-1 poly(A) removal proceeded until 30–50 nt remained, followed by rapid mRNA decay. In NO-treated cells, HO-1 deadenylation stopped with the mRNA retaining poly(A) tails 30–50 nt long. We hypothesize that NO treatment stops poly(A) tail shortening at the critical 30- to 50-nt length. This is not a general mechanism for the post-transcriptional regulation of HO-1 mRNA. Methyl methane sulfonate also stabilized HO-1 mRNA, but that was associated with an 8-fold decrease in the deadenylation rate compared to that of untreated cells. Another HO-1 inducer, CdCl2, caused a strong increase in the mRNA level without affecting the HO-1 mRNA half-life.


The regulation of HO-1 mRNA levels in response to cellular stress can be induced by transcriptional and different post-transcriptional events that act independently, and vary depending on the stress inducer. While NO appears to stabilize HO-1 mRNA by preventing the final steps of deadenylation, methyl methane sulfonate achieves stabilization through the regulation of earlier stages of deadenylation.