Email updates

Keep up to date with the latest news and content from BMC Molecular Biology and BioMed Central.

Open Access Highly Accessed Research article

Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae)

Guang-Mao Shen, Hong-Bo Jiang, Xiao-Na Wang and Jin-Jun Wang*

Author Affiliations

Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, P. R. China

For all author emails, please log on.

BMC Molecular Biology 2010, 11:76  doi:10.1186/1471-2199-11-76

Published: 6 October 2010

Abstract

Background

Quantitative real-time reverse transcriptase PCR (RT-qPCR) has been widely used for quantification of mRNA as a way to determine key genes involved in different biological processes. For accurate gene quantification analysis, normalization of RT-qPCR data is absolutely essential. To date, normalization is most frequently achieved by the use of internal controls, often referred to as reference genes. However, several studies have shown that the reference genes used for the quantification of mRNA expression can be affected by the experimental set-up or cell type resulting in variation of the expression level of these key genes. Therefore, the evaluation of reference genes is critical for gene expression profiling, which is often neglected in gene expression studies of insects. For this purpose, ten candidate reference genes were investigated in three different tissues (midgut, Malpighian tubules, and fat body) of the oriental fruit fly, Bactrocera dorsalis (Hendel).

Results

Two different programs, geNorm and Normfinder, were used to analyze the data. According to geNorm, α-TUB + ACT5 are the most appropriate reference genes for gene expression profiling across the three different tissues in the female flies, while ACT3 + α-TUB are considered as the best for males. Furthermore, we evaluated the stability of the candidate reference genes to determine the sexual differences in the same tissue. In the midgut and Malpighian tubules, ACT2 + α-TUB are the best choice for both males and females. However, α-TUB + ACT1 are the best pair for fat body. Meanwhile, the results calculated by Normfinder are quite the same as the results with geNorm; α-TUB is always one of the most stable genes in each sample validated by the two programs.

Conclusions

In this study, we validated the suitable reference genes for gene expression profiling in different tissues of B. dorsalis. Moreover, appropriate reference genes were selected out for gene expression profiling of the same tissues taking the sexual differences into consideration. This work not only formed a solid basis for future gene expression study in B. dorsalis, but also will serve as a resource to screen reference genes for gene expression studies in any other insects.