Email updates

Keep up to date with the latest news and content from BMC Microbiology and BioMed Central.

Open Access Highly Accessed Research article

A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

Michael Y Galperin

Author Affiliations

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA

BMC Microbiology 2005, 5:35  doi:10.1186/1471-2180-5-35

Published: 14 June 2005

Abstract

Background

Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction.

Results

This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others.

Conclusion

The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set) can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the highest IQ, including the current leader Wolinella succinogenes, are found among the poorly studied beta-, delta- and epsilon-proteobacteria. Among all bacterial phyla, only cyanobacteria appear to be true introverts, probably due to their capacity to conduct oxygenic photosynthesis, using a complex system of intracellular membranes. The census data, available at http://www.ncbi.nlm.nih.gov/Complete_Genomes/SignalCensus.html webcite, can be used to get an insight into metabolic and behavioral propensities of each given organism and improve prediction of the organism's properties based solely on its genome sequence.