Open Access Research article

Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations

Nela Nikolic123*, Thomas Barner12 and Martin Ackermann12

Author Affiliations

1 Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland

2 Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland

3 Current address: Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria

For all author emails, please log on.

BMC Microbiology 2013, 13:258  doi:10.1186/1471-2180-13-258

Published: 15 November 2013



In this study, we aimed at investigating heterogeneity in the expression of metabolic genes in clonal populations of Escherichia coli growing on glucose as the sole carbon source. Different metabolic phenotypes can arise in these clonal populations through variation in the expression of glucose transporters and metabolic enzymes. First, we focused on the glucose transporters PtsG and MglBAC to analyze the diversity of glucose uptake strategies. Second, we analyzed phenotypic variation in the expression of genes involved in gluconeogenesis and acetate scavenging (as acetate is formed and excreted during bacterial growth on glucose), which can reveal, for instance, phenotypic subpopulations that cross-feed through the exchange of acetate. In these experiments, E. coli MG1655 strains containing different transcriptional GFP reporters were grown in chemostats and reporter expression was measured with flow cytometry.


Our results suggest heterogeneous expression of metabolic genes in bacterial clonal populations grown in glucose environments. The two glucose transport systems exhibited different level of heterogeneity. The majority of the bacterial cells expressed the reporters for both glucose transporters MglBAC and PtsG and a small fraction of cells only expressed the reporter for Mgl. At a low dilution rate, signals from transcriptional reporters for acetyl-CoA synthetase Acs and phosphoenolpyruvate carboxykinase Pck indicated that almost all cells expressed the genes that are part of acetate utilization and the gluconeogenesis pathway, respectively. Possible co-existence of two phenotypic subpopulations differing in acs expression occurred at the threshold of the switch to overflow metabolism. The overflow metabolism results in the production of acetate and has been previously reported to occur at intermediate dilution rates in chemostats with high concentration of glucose in the feed.


Analysis of the heterogeneous expression of reporters for genes involved in glucose and acetate metabolism raises new question whether different metabolic phenotypes are expressed in clonal populations growing in continuous cultures fed on glucose as the initially sole carbon source.

Phenotypic variation; Glucose; Acetate; Uptake; Metabolism; Cross-feeding; Fluorescent reporters; Flow cytometry