Email updates

Keep up to date with the latest news and content from BMC Microbiology and BioMed Central.

Open Access Research article

Impact of oral simvastatin therapy on acute lung injury in mice during pneumococcal pneumonia

Angela R Boyd, Cecilia A Hinojosa, Perla J Rodriguez and Carlos J Orihuela*

Author Affiliations

Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA

For all author emails, please log on.

BMC Microbiology 2012, 12:73  doi:10.1186/1471-2180-12-73

Published: 15 May 2012

Abstract

Background

Recent studies suggest that the reported protective effects of statins (HMG-CoA reductase inhibitors) against community-acquired pneumonia (CAP) and sepsis in humans may be due to confounders and a healthy user-effect. To directly test whether statins are protective against Streptococcus pneumoniae, the leading cause of CAP, we examined the impact of prolonged oral simvastatin therapy at physiologically relevant doses in a mouse model of pneumococcal pneumonia. BALB/c mice were placed on rodent chow containing 0 mg/kg (control), 12 mg/kg (low simvastatin diet [LSD]; corresponds to 1.0 mg/kg/day), or 120 mg/kg (high simvastatin diet [HSD]; corresponds to 10 mg/kg/day) simvastatin for four weeks, infected intratracheally with S. pneumoniae serotype 4 strain TIGR4, and sacrificed at 24, 36, or 42 h post-infection for assessment of lung histology, cytokine production, vascular leakage and edema, bacterial burden and bloodstream dissemination. Some mice received ampicillin at 12-h intervals beginning at 48 h post-infection and were monitored for survival. Immunoblots of homogenized lung samples was used to assess ICAM-1 production.

Results

Mice receiving HSD had reduced lung consolidation characterized by less macrophage and neutrophil infiltration and a significant reduction in the chemokines MCP-1 (P = 0.03) and KC (P = 0.02) and ICAM-1 in the lungs compared to control mice. HSD mice also had significantly lower bacterial titers in the blood at 36 (P = 0.007) and 42 (P = 0.03) hours post-infection versus controls. LSD had a more modest effect against S. pneumoniae but also resulted in reduced bacterial titers in the lungs and blood of mice after 42 h and a reduced number of infiltrated neutrophils. Neither LSD nor HSD mice had reduced mortality in a pneumonia model where mice received ampicillin 48 h after challenge.

Conclusions

Prolonged oral simvastatin therapy had a strong dose-dependent effect on protection against S. pneumoniae as evidenced by reduced neutrophil infiltration, maintenance of vascular integrity, and lowered chemokine production in the lungs of mice on HSD. Statin therapy also protected through reduced bacterial burden in the lungs. Despite these protective correlates, mortality in the simvastatin-receiving cohorts was equivalent to controls. Thus, oral simvastatin at physiologically relevant doses only modestly protects against pneumococcal pneumonia.