Email updates

Keep up to date with the latest news and content from BMC Microbiology and BioMed Central.

Open Access Research article

Molecular characterization of rifampicin-resistant Staphylococcus aureus isolates in a Chinese teaching hospital from Anhui, China

Wenjing Zhou1, Wulin Shan12, Xiaoling Ma12*, Wenjiao Chang12, Xin Zhou12, Huaiwei Lu12 and Yuanyuan Dai12

Author Affiliations

1 Department of Laboratory Medicine, Anhui Provincial Hospital, Hefei, China

2 Anhui Medical University, Hefei, 230032, People’s Republic of China

For all author emails, please log on.

BMC Microbiology 2012, 12:240  doi:10.1186/1471-2180-12-240

Published: 22 October 2012

Abstract

Background

Staphylococcus aureus (S. aureus) is a major nosocomial pathogen that causes a variety of infections and toxicoses. In recent years, the percentage of rifampicin-resistant S. aureus has increased rapidly in China. The aims of this study were to analyze 1) the level of rifampicin resistance in S. aureus and its correlation with mutations in the rpoB gene, and 2) the molecular characterization of rifampicin-resistant S. aureus isolates.

Results

88 rifampicin-resistant S. aureus isolates were collected for this study. Of the 88 isolates, 83 (94.3%) were high-level rifampicin resistant (MIC≥8 mg/L) while the remaining 5 isolates (5.7%) had a low-level resistance to rifampicin (MIC, 2 to 4 mg/L). Four amino acid substitutions were found in the 88 isolates, which were 481His/Asn (95.5%), 466Leu/Ser (87.5%), 477Ala/Asp (6.8%) and 486Ser/Leu (4.5%) respectively. All mutations were found to be present in cluster I of the rpoB gene. The low-level resistant isolates were found to have only one mutation, while the high-level resistant isolates had at least two or more mutations. The most common multiple mutations were 481His/Asn+466Leu/Ser(92.8%,77/83). The other multiple mutations found were 481His/Asn+477Ala/Asp (6.0%,5/83), and 481His/Asn+466Leu/Ser+477Ala/Asp (1.2%,1/83). Out of 28 high-level rifampicin-resistant S. aureus isolates, three molecular types were found, namely, ST239-MRSA-III-spa t030 (25/28, 89.3%), ST239-MRSA-III-spa t021 (2/28, 7.1%), and ST239-MRSA-III-spa t045 (1/28, 3.6%).

Conclusions

Rifampicin resistance in S. aureus was closely associated with mutations in the rpoB gene. High-level rifampicin-resistant S. aureus is one of the most important features in Anhui Provincial Hospital, and high-level rifampicin resistance in S. aureus is associated with multiple mutations of rpoB gene. The prevalence of high-level rifampicin-resistant S. aureus in Anhui may be associated with the spread of the ST239-MRSA III-spa t030 clone.

Keywords:
Staphylococcus aureus; MRSA; Rifampicin resistance; rpoB gene; MLST